Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(2^5=32\overline{=}1\left(mod31\right)\)
\(\Rightarrow\left(2^5\right)^{402}\overline{=}1\left(mod31\right)\)
\(\Rightarrow2^{2010}\overline{=}1\left(mod31\right)\)
\(\Rightarrow2^{2011}\overline{=}2\left(mod31\right)\)
Vậy \(2^{2011}\) chia 31 dư 2
Ta có :233=8 (mode 31)
(233)11=2363=8(mode 31)
(2363)5=21815 =1(mode 31)
(233)6=2198=8(mode 31)
21815.2198:22=22011=1.8:4=2(mode 31)
Vậy số dư là 2
ta có : \(2^{33}\equiv8\)(mod31)
\(\left(2^{33}\right)^{11}=2^{363}\equiv8\)(mod31)
\(\left(2^{363}\right)^5=2^{1815}\equiv1\)(mod31)
\(\left(2^{33}\right)^6\equiv2^{198}\equiv8\)(mod31)
=> \(2^{1815}.2^{198}:2^2=2^{2011}\equiv1.8:4\equiv2\)(mod31)
vậy số dư pháp chia trên là 2
Đề: \(2^{2010}:31\) có số dư là
Giải: Áp dụng phép đồng dư
Ta có: \(2^{10}\equiv1\left(mod31\right)\)
\(\left(2^{10}\right)^{201}\equiv1^{201}\equiv1\left(mod31\right)\)
Vậy \(2^{2010}:31\) có số dư là 1
A = \(\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)+1\)
\(=2.31+2^6.31+....+2^{96}.31+1=31.\left(2+2^6+...+2^{06}\right)+1\)
Vậy A chia 31 dư 1
\(A=1+2+2^2+2^3+...+2^{201}\)
\(2A=2+2^2+2^3+...+2^{201}\)
\(2A-A=2^{201}-1\)
Ta có: \(2^5\)đồng dư với 1 (mod 31)
\(^{\left(2^5\right).2}\)đồng dư với 2 (mod 31)
\(^{2^{201}-1}\) đồng dư với 2-1=1(mod 31)
Vậy A : 31 dư 1
a/ Chiều dài thực của sân vận động đó là:
15 x 1000 = 15000 ﴾cm﴿
Chiều rộng thực của sân vận động đó là:
12 x 1000 = 12000 ﴾cm﴿
Đổi: 15000 cm = 150 m; 12000 cm = 120 m
Chu vi thực của sân vận động đó là:
﴾150 + 120﴿ x 2 = 540 ﴾m﴿
b/ Diện tích thực của sân vận động đó là:
150 x 120 = 18000 ﴾m2﴿
Đáp số: a/ 540 m b/ 18000 m2
A=1+2+22+23+...+2100
A=1+(2+22+23+24+25)+(26+27+28+29+210)+...+(296+297+298+299+2100)
A=1+2(1+2+22+23+24)+25(1+2+22+23+24)+...+296(1+2+22+23+24)
A=1+2.31+25.31+...+296.31
A=1+[31(2+25+...+296)]
Vi 31(2+25+..+296) chia het cho 31
Nen 1+[31(2+25+...296)] chia cho 31 du 1
Vay A chia cho du 1