\(2011^{109}+2012^{67}+6739543\) cho 57

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

Câu a : Ta có :

\(2012^1\equiv17\left(mod57\right)\)

\(2012^2\equiv17^2\equiv4\left(mod57\right)\)

\(2012^7\equiv17^7\equiv5\left(mod57\right)\)

\(2012^{10}\equiv5.4.17\equiv55\left(mod57\right)\)

\(2012^{30}\equiv55^3\equiv49\left(mod57\right)\)

\(2012^{60}\equiv49^2\equiv7\left(mod57\right)\)

\(\Rightarrow2012^{67}\equiv7.5\equiv35\left(mod57\right)\)

Vậy số dư của phép chia là 35

25 tháng 7 2018

mạo mụi em lm lụi theo lời BÁC DƯƠNG dạy .

câu b)

\(2011\equiv16\left(mod57\right)\)

\(2011^2\equiv16^2\equiv28\left(mod57\right)\)

\(2011^7\equiv16^7\equiv55\left(mod57\right)\) \(2011^9\equiv28.55\equiv1\left(mod57\right)\) \(2011^{10}\equiv16.28.55\equiv16\left(mod57\right)\) \(2011^{50}\equiv16^5\equiv4\left(mod57\right)\) \(2011^{100}\equiv4^2\equiv16\left(mod57\right)\)

\(\Rightarrow\) \(2011^{209}\equiv16.1\equiv16\left(mod57\right)\)

vậy số dư của phép chia là 16

31 tháng 10 2016

DS=27

2 tháng 11 2016

giải ra gium mk ik

24 tháng 5 2019

đa thức chia có bậc 2 nên đa thức dư có bậc không quá 1. vậy đa thức dư có bậc nhất dạng ax+b

Ta có: \(x^{67}+x^{47}+x^{27}+x^7+x+1=\left(x^2-1\right).Q\left(x\right)+ax+b\)

Cho x=1 rồi x=-1 ta được: \(\hept{\begin{cases}1+1+1+1+1+1=a+b\\-1-1-1-1-1+1=-a+b\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+b=6\\-a+b=-4\end{cases}\Leftrightarrow\hept{\begin{cases}a=5\\b=1\end{cases}}}\)

Vậy dư trong phép chia trên là 5x+1

cách 1 bn đặt phép tính chia ra rùi làm còn cách 2 thì để mk suy nghĩ!!!

45435656457567565687697634534645645767567567876878365546454545

à quên cách 2 ko dùng cho phép chia có dư được hì!!

456547657567557876897345345345346546456465465756

7 tháng 10 2016

Theo bài ra , ta có : 

a) 

\(12^{2000}-2^{1000}\)

\(=\left(12^2\right)^{1000}-2^{1000}\)

Rút gọn cả hai vế này ta được 

\(144-2=142\)  chia hết cho 10 

7 tháng 10 2016

Nhưng mà 142 đâu có chia hết cho 10 đâu.

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

7 tháng 10 2016

~~~~~~~

~~~~~~~~~

~~~~~~~

~~~~~~~~

~~~~~~~

olm-logo.png