K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2024

`A = 3 + 3^2 + ... + 3^2024`

(Có 2024 số hạng, nhóm 3 số hạng lại thì còn dư 2 số hạng không có nhóm)

`A = 3 + 3^2 + (3^3 + 3^4 + 3^5) +...+ (3^2022 + 3^2023 + 3^2024) `

`A = 12 + 3^2 (3+3^2 + 3^3) + ... + 3^2021 (3 + 3^2 + 3^3) `

`A = 12 + 3^2 . 39 + ... + 3^2021 . 39`

`A = 12 + 39 . (3^2 + ... + 3^2021) `

Do `39 vdots 13 => 39 . (3^2 + ... + 3^2021) vdots 13`

`=>  12 + 39 . (3^2 + ... + 3^2021)` chia `13` dư `12`

Vậy số dư là `12`

26 tháng 9 2024

 A = 3 + 32+ 33 +...+ 32024

Xét dãy số: 1; 2; 3;...; 2024

Dãy số trên có 2024 số hạng vì 2024 : 3 = 674 dư 2 nên nhóm hai hạng tử liên tiếp của A vào nhau ta được:

A = 3 + 32 + (33 + 34 + 35) +(36 + 37 + 38) + ... + (32022 + 32023 + 32024)

A = 3 + 32 + 33.(1 + 3 + 32) + 36(1 + 3 + 32) + ... +32022.(1 + 3 + 32)

A = 3 + 9 + 33.13 + 36.13+..+ 32022.13

A = 12+ 13.(33 + 36 + ...+ 32022)

Vậy A : 13 dư 12 

13 tháng 7 2017

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21 
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 ) 
=> A = 2^21 là một lũy thừa của 2 
3. 
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100) 
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2 
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101 
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 ) 
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2 
c) xem lại đề ý c xem quy luật như thế nào nhé. 
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151 
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150) 
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

13 tháng 7 2017

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21 
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 ) 
=> A = 2^21 là một lũy thừa của 2 
3. 
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100) 
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2 
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101 
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 ) 
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2 
c) xem lại đề ý c xem quy luật như thế nào nhé. 
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151 
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150) 
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

NM
22 tháng 10 2021

ta có :

\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+..+\left(3^{58}+3^{59}+3^{60}\right)\)

\(=13.3+13.3^4+13.3^7+..+13.3^{58}\text{ nên A chia hết cho 13}\)

b. ta có :

\(M=\left(2+2^3\right)+\left(2^2+2^4\right)+\left(2^5+2^7\right)+..+\left(2^{18}+2^{20}\right)\)

\(=2.5+2^2.5+2^5.5+2^6.5+..+2^{18}.5\text{ nên B chia hết cho 5}\)

10 tháng 11 2023

a) \(A=2+2^2+...+2^{2024}\)

\(2A=2^2+2^3+...+2^{2025}\)

\(2A-A=2^2+2^3+...+2^{2025}-2-2^2-...-2^{2024}\)

\(A=2^{2025}-2\) 

b) \(2A+4=2n\)

\(\Rightarrow2\cdot\left(2^{2025}-2\right)+4=2n\)

\(\Rightarrow2^{2026}-4+4=2n\)

\(\Rightarrow2n=2^{2026}\)

\(\Rightarrow n=2^{2026}:2\)

\(\Rightarrow n=2^{2025}\) 

c) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2023}+2^{2024}\right)\)

\(A=2\cdot3+2^3\cdot3+...+2^{2023}\cdot3\)

\(A=3\cdot\left(2+2^3+...+2^{2023}\right)\)

d) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)

\(A=2+2^2\cdot7+2^5\cdot7+...+2^{2022}\cdot7\)

\(A=2+7\cdot\left(2^2+2^5+...+2^{2022}\right)\)

Mà: \(7\cdot\left(2^2+2^5+...+2^{2022}\right)\) ⋮ 7

⇒ A : 7 dư 2 

10 tháng 11 2023

cái câu d nó cứ sao sao ý bn

hiu

10 tháng 11 2021

\(A=2+2^2+2^3+2^4+.....2^{100}\)

\(=2.3+2^3.3+....2^{99}.3\)

\(=6\left(1+2^2+....2^{98}\right)⋮6\)

NM
17 tháng 3 2022

với ba điểm ABC thẳng hàng ta vẽ được 3 đoạn thẳng là AB,BC và AC

vậy ta chọn đáp án A

2= 4: 25

2x = (22)3 : 25

2x = 26 : 25

2x = 2

=> x = 1

18 tháng 9 2016

viết kiểu gì ko hiểu

31 tháng 10 2023

S = 3 + 3² + 3³ + ... + 3⁹⁹ + 3¹⁰⁰

= 3 + (3² + 3³ + 3⁴) + (3⁵ + 3⁶ + 3⁷) + ... + (3⁹⁸ + 3⁹⁹ + 3¹⁰⁰)

= 3 + 3².(1 + 3 + 3²) + 3⁵.(1 + 3 + 3²) + ... + 3⁹⁸.(1 + 3 + 3²)

= 3 + 3².13 + 3⁵.13 + ... + 3⁹⁸.13

= 3 + 13.(3² + 3⁵ + ... + 3⁹⁸)

Do 13.(3² + 3⁵ + ... + 3⁹⁸) ⋮ 13

⇒ 3 + 13.(3² + 3⁵ + ... + 98) chia 13 dư 3

Vậy S chia 13 dư 3