K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2017

A=1+2^1+2^2+...+2^100

2A-A=2.( 1+2^1+2^2+....+2^100) - (1+2^1+2^2+....+2^100)

A=(2+2^2+2^3+...+2^101) - (1+2^1+2^2+....+2^100)

suy ra A=2^101-1

         suy ra A=(2^4)^25.2-1

                  A=(..6)^25.2-1

                  A=(...6).2-1

                  A=(....2)-1

                  A=(....1)    Suy ra A chia 100 dư 

               Nhớ k cho mình nha, mình giải rõ ràng và nhanh nhất đó

31 tháng 1 2016

Số dư của A là 1

31 tháng 1 2016

Số dư của A là 1

29 tháng 12 2016

=4 bn

29 tháng 12 2016

ghi rõ cách làm ra đi

15 tháng 12 2021

\(A=2^0+\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(A=1+2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(A=1+3\left(2+2^3+2^5+...+2^{99}\right)\)

A chia 3 dư 1

6 tháng 1 2016

0

tich nha 

avt311182_60by60.jpgkudosinichi

6 tháng 1 2016

A = \(\left(2+2^2+2^3+2^4+2^5\right)+....+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)+1\)

\(A=2.31+2^6.31+....+2^{96}.31+1\)

\(A=31.\left(2+2^6+...+2^{96}\right)+1\)

Vậy A chia 31 được số dư là 1 

7 tháng 3 2017

123456789

7 tháng 3 2017

A+1=(1+21+22+23)+(24+25+26+27)+...+(297+298+299+2100)

A+1= 1.15+24.15+...+297.15

A+1=15.(1+24+...+297)

A+1 chia hết cho 15

=> A chia cho 15 dư 14

k mình nha

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

1.

Đặt $A=2+2^2+2^3+...+2^{100}$

$2A=2^2+2^3+2^4+...+2^{101}$

$\Rightarrow 2A-A=2^{101}-2$

$\Rightarrow A=2^{101}-2$

Có: 

$A+n=510$

$2^{101}-2+n=510$

$n=510+2-2^{101}=512-2^{101}$

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

2.

$A=7+(7^2+7^3)+(7^4+7^5)+....+(7^{20}+7^{21})$

$=7+7^2(1+7)+7^4(1+7)+...+7^{20}(1+7)$

$=7+(1+7)(7^2+7^4+....+7^{20})$

$=7+8(7^2+7^4+...+7^{20)$

$\Rightarrow A$ chia 8 dư 7.

13 tháng 12 2021

học dốt thế lớp 1 còn giải dc

24 tháng 9 2023

thế bạn ánh giải đi xem nào lớp 1 đã học mũ đâu nhể!

Mk nghĩ dư 1 

Nhưng mk ko thể giải ra giúp cậu

Mk xin lỗi 

Nhưng mong cậu k mk nha

A = 20 + 21 + 22 + 23 + ....... + 2100

A = 1 + ( 21 + 22 + 23 + 24 ) + ........... + ( 297 + 298 + 299 + 2100 )

A = 1 + 2(1 + 2 + 22 + 23) + ......... + 297(1 + 2 + 22 + 23)

A = 1 + ( 1 + 2 + 22 + 23 )(2 + ........ + 297)

A = 1 + 15(2 + ......... + 297)

Mà 15( 2 + ........ + 297 ) chia hết cho 100

\(\Rightarrow\)A chia cho 100 dư 1

10 tháng 12 2019

A = 50 + 51 + 52 + 53 +...+5100 ( cs 101 so)

A = 50 +51 +( 52 +  53 + 54 )+( 55+56+57)+...+( 598 + 599 + 5100 )

A = 6+ 52.31 +55.31+...+598.31 chia 31 du 6

:)