\(3^{506^{80}}\) khi cho cho 7, 15

P/s: Em cần phần: "tìm số dư khi c...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

giai lai

\(506^{80}\equiv2^{80}\equiv0\left(\text{mod }4\right)\)

Đặt \(506^{80}=4k\left(k\inℕ^∗\right)\)

\(\Rightarrow3^{506^{80}}=3^{4k}\)

Ta có:

\(3^{4k}⋮3\left(k\inℕ^∗\right)\Rightarrow3^{4k}-6⋮3\)(1)

\(3^4\equiv1\left(mod5\right)\Rightarrow3^{4k}\equiv1\left(mod5\right)\Rightarrow3^{4k}-1-5⋮5\)

\(\Rightarrow3^{4k}-6⋮5\)(2)

Từ (1) và (2) => 34k chia hết cho 15 vì (3,5)=1

Vậy...

19 tháng 6 2019

nhầm dòng gần cuối 34k-6 :(( 

27 tháng 9 2016

Đối với những dạng bài tìm số dư của lũy thừa chồng lũy thừa ta sẽ tìm n để \(a^n:b\)dư 1 . Trong bài này a = 7, b = 15.
Dễ dàng nhận thấy: \(7^4:15=160\)dư 1.
Vậy ta sẽ tìm số dư của \(7^7\)khi chia cho 4.
Nhận xét: \(7^2:4=12\)dư 1.
Vậy: \(7^7=7^{2.3+1}=\left(7^2\right)^3.7\).
Do \(7^2\)chia 4 dư 1 và 7 chia cho 4 dư 3 nên. \(\left(7^2\right)^3.7\)chia cho 4 dư \(\left(1\right)^3.3=3.\)
Suy ra: \(7^7=4k+3,\)k là số nguyên dương.
Ta có: \(7^{7^7}=7^{4k+3}=\left(7^4\right)^k.7^3.\)
Nhận xét: \(\left(7^4\right)^k\)chia 15 dư 1; \(7^3=343\) chia 15 dư 13. 
Vậy: \(7^{7^7}\)chia 15 dư 1. 13 = 13.

27 tháng 9 2016

I am ateachear I can kill you,k me

17 tháng 9 2016

dễ mà bài này quá dễ

17 tháng 9 2016

Phan Văn Hiếu:làm đi trước khi nói

9 tháng 2 2017

Ta có \(F\left(x\right)=g\left(x\right).\left(x+1\right)+4\)

Giả sử \(g\left(x\right)=r\left(x\right).\left(x^2+1\right)+ax+b\)

Suy ra \(F\left(x\right)=r\left(x\right).\left(x+1\right)\left(x^2+1\right)+\left(ax+b\right)\left(x+1\right)+4\)

Đa thức dư là \(h\left(x\right)=\left(ax+b\right)\left(x+1\right)+4\) ta có \(h\left(x\right)=ax^2+\left(a+b\right)x+\left(b+4\right)\)

Theo giả thiết \(h\left(x\right)\) chia \(\left(x^2+1\right)\) dư \(2x+3\)

\(h\left(x\right)=a\left(x^2+1\right)+\left(a+b\right)x+\left(b-a+4\right)\)

\(\Rightarrow\)\(\hept{\begin{cases}a+b=2\\b-a+4=3\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=\frac{3}{2}\\b=\frac{1}{2}\end{cases}}\)

Vậy đa thức dư là \(h\left(x\right)=\left(\frac{3}{2}x+\frac{1}{2}\right)\left(x+1\right)+4\)

9 tháng 2 2017

Ta có f(x) chia cho x + 1 dư 4 nên theo bê-du ta có: f(-1) = 4 (1)

Khi chi f(x) cho (x + 1)(x2 + 1) thì phần dư phải là đa thức bậc 2 hay

f(x) = (x + 1)(x2 + 1)Q(x) + ax2 + bx + c

= (x + 1)(x2 + 1)Q(x) + a(x2 + 1)+ bx + c - a

= (x2 + 1)[(x + 1)Q(x) + a] + bx + c - a (2)

Mà f(x) chia cho x2 + 1 dư 2x + 3 (3)

Từ (1), (2), (3) ta suy ra hệ

\(\hept{\begin{cases}b=2\\c-a=3\\a-b+c=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=2\\a=\frac{3}{2}\\c=\frac{9}{2}\end{cases}}\)

Vậy đa thức dư cần tìm là: \(\frac{3}{2}x^2+2x+\frac{9}{2}\)

9 tháng 9 2016

a) Ta có :

\(7^{8^9}=7^{2^{27}}=7^{4^{13}}.7\)

\(7^4=2401\text{≡}1\left(mod15\right)\)

\(\Rightarrow7^{4^{13}}.7\text{≡}1^{13}.7\left(mod15\right)\)

\(\Leftrightarrow7^{8^9}\text{≡}1.7\text{≡}7\left(mod15\right)\)

Vậy ...

b) Để tớ hỏi cô tớ chút nhé :(

9 tháng 9 2016

-Dung:để t xem lại cách làm của c câu a) đã,cô t bảo bài đó dài,phải xét tới 9 lần 78 đồng dư với ..(mod15) cơ

20 tháng 6 2019

tém lại chút đi

Dễ thấy \(100^{80}⋮50\) ,đặt \(100^{80}=50t\) với t là số chẵn

Ta có:\(302\equiv52\)(mod 125)\(\Rightarrow302^5\equiv52^5=26^5.2^5=26^5.32\equiv32\)(mod 125)
\(\Rightarrow302^{10}\equiv32^2\equiv24\)(mod 125) \(\Rightarrow302^{50}\equiv24^5\equiv-1\)(mod 125)
Khi đó:\(302^{100^{80}}=302^{50t}=\left(302^{50}\right)^t\equiv\left(-1\right)^t=1\)(mod 125) do t là số chẵn
 

20 tháng 6 2019

số dư cua phép đó là 80

k mik nha

15 tháng 7 2018

\(x^7+x^5+x^3+1=x^7-x^5+2x^5-2x^3+3x^3-3x+3x+1\)

\(=x^5\left(x^2-1\right)+2x^3\left(x^2-1\right)+3x\left(x^2-1\right)+3x+1\)

\(=\left(x^5+2x^3+3x\right)\left(x^2-1\right)+3x+1\) 

Vì bậc của đa thức \(3x+1\) là 1 nhỏ hơn bậc của \(x^2-1\) là 2 nên \(3x+1\) là phần dư