\(=\dfrac{12\sqrt{x}+5}{3\sqrt{x}-1}\) nhận giá trị nguyên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để M là số nguyên thì \(12\sqrt{x}+5⋮3\sqrt{x}-1\)

=>\(12\sqrt{x}-4+9⋮3\sqrt{x}-1\)

=>\(3\sqrt{x}-1\in\left\{1;-1;3;-3;9;-9\right\}\)

=>\(3\sqrt{x}\in\left\{2;0;4;10\right\}\)

=>\(\sqrt{x}\in\left\{0;\dfrac{2}{3};\dfrac{4}{3};\dfrac{10}{3}\right\}\)

mà x là số chính phương

nên x=0

30 tháng 8 2023

\(M=\dfrac{12\sqrt{x}+5}{3\sqrt{x}-1}\)

\(M=\dfrac{12\sqrt{x}-4+9}{3\sqrt{x}-1}\)

\(M=\dfrac{4\left(3\sqrt{x}-1\right)+9}{3\sqrt{x}-1}\)

\(M=\dfrac{4\left(3\sqrt{x}-1\right)}{3\sqrt{x}-1}+\dfrac{9}{3\sqrt{x}-1}\)

\(M=4+\dfrac{9}{3\sqrt{x}-1}\)

M nguyên khi: 

\(9\) ⋮ \(3\sqrt{x}-1\)

Mà: \(3\sqrt{x}-1\ge-1\)

\(\Rightarrow3\sqrt{x}-1\in\left\{1;-1;3;9\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};\dfrac{10}{3}\right\}\)

\(\Rightarrow x\in\left\{\dfrac{4}{9};0;\dfrac{16}{9};\dfrac{100}{9}\right\}\)

Mà: x là số chính phương nên:

x = 0

27 tháng 11 2018

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm

12 tháng 5 2017

\(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)

Để biểu thức đã cho nhận giá trị nguyên buộc \(\dfrac{4}{\sqrt{x}-3}\) nguyên

\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)\in\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow x\in\left\{1;4;16;25;49\right\}\)

Vậy ......

27 tháng 5 2017

Ôn tập Căn bậc hai. Căn bậc ba

Ôn tập Căn bậc hai. Căn bậc ba

a)ĐKXĐ :\(x\ge0;x\ne9\)

khai triển => \(P=\frac{x-4}{\sqrt{x}+1}\)

b) Ta có :\(x=\sqrt{14-6\sqrt{5}}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
 

Thay vào P ta có : \(P=\frac{3-\sqrt{5}-4}{\sqrt{3-\sqrt{5}}+1}=-\frac{7+\sqrt{5}}{\sqrt{3-\sqrt{5}}+1}\)

19 tháng 11 2016

Ta có

\(1D=\frac{\sqrt{x}-2}{\sqrt{x}-3}=1+\frac{1}{\sqrt{x}-3}\)

Để cho D nguyên thì \(\sqrt{x}-3\)phải là ước của 1

\(\Rightarrow\sqrt{x}-3=\left(-1;1\right)\)

=> x = (4; 16)

=> D = (0; 2)

19 tháng 11 2016

1/ Để N nhận giá trị nguyên thì trước hết \(\sqrt{x}-2\)phải là ước của 3

\(\sqrt{x}-2=\left(-3;-1;1;3\right)\)

Thế vào ta tìm được x = (1; 9; 25)

=> N = (- 3; 3;1)