\(x\left(x+y\right)=-45\)

\(y\left(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2015

x(x+y)=-45 (1)

y(x+y)=5   (2)

cộng (1) với (2),vế theo vế ta đc:

x(x+y)+y(x+y)=-45+5=-40

=>(x+y)^2=-40

vì (x+y)^2>0;-40<0

=>ko tìm đc cặp (x;y) thỏa mãn

=>số cặp (x;y) thỏa mãn là 0

tik nhé

\(1)\)

\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)

\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận ) 

TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại ) 

Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)

\(2)\)

\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)

\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)

\(\Rightarrow\)\(VT\ge VP\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại ) 

TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận ) 

\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)

Vậy \(1\le x\le5\) và \(y=-1\)

26 tháng 5 2017

\(x\left(x+y+z\right)=-5\left(1\right);y\left(x+y+z\right)=9\left(2\right);z\left(x+y+z\right)=5\left(3\right)\)

Cộng vế với vế của (1);(2);(3) với nhau ta được (x+y+z)2=9 =>x+y+z=-3 hoặc x+y+z=3

TH1: x+y+z=-3 

Thay x+y+z=-3 vào (1);(2) ta được x.(-3)=-5 => x=5/3; y.(-3)=9 => y=-3

x+y+z=(5/3)+(-3)+z=-3 => (5/3)+z=0 => z=-5/3

TH2: x+y+z=3

Thay x+y+z=3 vào (1);(2) ta được x.3=-5 => x=-5/3; y.3=9 => y=3

x+y+z=(-5/3)+3+z=3 => (-5/3)+z=0 => z=5/3

Vậy x=5/3;y=-3;z=-5/3 hoặc x=-5/3;y=3;z=-5/3

26 tháng 5 2017

Theo đề ra ta có:

\(\frac{-5}{x}=\frac{9}{y}=\frac{5}{z}=x+y+z=\frac{9}{x+y+z}\)(áp dụng tính chất của dãy tỉ số bằng nhau)

\(\rightarrow\left(x+y+z\right)^2=9\rightarrow\orbr{\begin{cases}x+y+z=3\\x+y+z=-3\end{cases}}\)

\(\rightarrow\orbr{\begin{cases}x=\frac{-5}{3}\\x=\frac{5}{3}\end{cases},}\orbr{\begin{cases}y=3\\y=-3\end{cases},}\orbr{\begin{cases}z=\frac{5}{3}\\z=\frac{-5}{3}\end{cases}}\)

6 tháng 9 2016

x(x+y+z)=-5 (1)

y(x+y+z)=9 (2)

z(x+y+z)=5 (3)

Lấy (1)+(2)+(3) ta được

x(x+y+z)+y(x+y+z)+z(x+y+z)=(-5)+9+5

=>(x+y+z)(x+y+z)=9  ( Áp dụng tính chất phân phối)

=>x+y+z=3 hoặc x+y+z=-3

Vậy các số x,y,z thỏa mãn là các x,y,z có tổng bằng 3 hoặc -3

6 tháng 9 2016

TH1 x+y+z=3

=>x=(-5)/3

y=9:3=3

z=5/3

TH2

x+y+z=-3

=>x=(-5) / (-3) =5/3

y=9:(-3)=(-3)

z=5:(-3)=-5/3

3 tháng 10 2017

1. Tìm x:

a) \(\left(x+36\right)^2=1936\Leftrightarrow x+36=\pm44.\) Vậy x = 8 hoặc x = -80

b) \(\left(\dfrac{3}{5}\right)^{x+2}=\dfrac{81}{625}\Leftrightarrow\left(\dfrac{3}{5}\right)^{x+2}=\left(\dfrac{3}{5}\right)^4\Leftrightarrow x+2=4\Leftrightarrow x=2\)

c) Xem lại đề

d) \(\left(\dfrac{9}{16}\right)^{x-5}=\left(\dfrac{4}{3}\right)^4\Leftrightarrow\left(\dfrac{3}{4}\right)^{2\left(x-5\right)}=\left(\dfrac{3}{4}\right)^{-4}\Leftrightarrow2\left(x-5\right)=-4\Leftrightarrow x=3\)

e) \(\left(\dfrac{3}{5}\right)^x.\left(\dfrac{125}{27}\right)^x=\dfrac{81}{625}\Leftrightarrow\left(\dfrac{3}{5}.\dfrac{125}{27}\right)^x=\left(\dfrac{3}{5}\right)^4\Leftrightarrow\left(\dfrac{5}{3}\right)^{2x}=\left(\dfrac{5}{3}\right)^{-4}\Leftrightarrow2x=-4\) Vậy x = -2

3 tháng 10 2017

3. Tính giá trị của biểu thức:

\(A=\left\{-\left[\left(\dfrac{1}{x}\right)^2\right]^3\right\}^5.\left\{-\left[\left(-x\right)^5\right]^2\right\}^3\) \(\left(x\notin0\right)\)

\(=\left\{-\left[-\dfrac{1}{x^2}\right]^3\right\}^5.\left\{-\left[-\left(-x\right)^5\right]^2\right\}^3=\left\{-\left[-\dfrac{1}{x^6}\right]\right\}^5.\left\{-\left[x^5\right]^2\right\}^3\)

\(=\left\{\dfrac{1}{x^6}\right\}^5.\left\{-x^{10}\right\}^3=\dfrac{1}{x^{30}}.\left(-x^{30}\right)=-1\)

29 tháng 7 2018

Cộng 3 đẳng thức vế với vế ta có:

(x+y+z)(x+y+z)=-5+9+5

(x+y+z)2=9

=>x+y+z=3 hoặc x+y+z=-3

Với x+y+z=3 =>\(\hept{\begin{cases}3x=-5\\3y=9\\3z=5\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-5}{3}\\y=3\\z=\frac{5}{3}\end{cases}}}\)

Với x+y+z=-3 => x=5/3,y=-3,z=-5/3

Vậy...

22 tháng 11 2018

1. Do y tỉ lệ thuận với x,ta có công thức: y = kx (k là một hằng số khác 0) (k là hệ số tỉ lệ). Thay vào,ta có: \(y=f\left(x\right)=kx=\frac{1}{2}x\)

a) Để \(f\left(x\right)=5\) hay \(y=5\) thì \(y=f\left(x\right)=\frac{1}{2}x=5\Leftrightarrow\frac{x}{2}=5\Leftrightarrow x=10\)

b) Giả sử \(x_1>x_2\Rightarrow\frac{x_1}{2}>\frac{x_2}{2}\) hay \(\frac{1}{2}.x_1>\frac{1}{2}.x_2\) hay \(f\left(x_1\right)>f\left(x_2\right)\) (đpcm)

2. Do y tỉ lệ với x,ta có công thức y = kx (k là hằng số khác 0,là hệ số tỉ lệ). Thay vào,ta có công thức: \(y=f\left(x\right)=kx=12x\)

a) Tương tự bài 1

b) Ta có: \(f\left(-x\right)=12.\left(-x\right)\)

\(-f\left(x\right)=-12.x\)

Mà \(12.\left(-x\right)=-12.x\) suy ra \(f\left(-x\right)=-f\left(x\right)\) (đpcm)

8 tháng 6 2017

Cộng theo từng vế ta được:
\(\left(x+y+z\right)^2=9\)\(\Rightarrow x+y+z=\pm3\)
Nếu \(x+y+z=3\) thì \(x=-\dfrac{5}{3},y=3,z=\dfrac{5}{3}\).
Nếu \(x+y+z=-3\) thì \(x=\dfrac{5}{3},y=-3,z=-\dfrac{5}{3}\).

29 tháng 7 2017

Cộng theo từng vế ta được :

\(\left(x+y+z\right)^2=9\Rightarrow x+y+z=\pm3\)

Nếu \(x+y+z=3\)thì \(x=-\dfrac{5}{3},y=3,z=\dfrac{5}{3}\).

Nếu\(x+y+x=-3\)thì \(x=\dfrac{5}{3},y=-3,z=-\dfrac{5}{3}\).