Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này thiếu đk là a,b,c là các số nguyên nhé
xét cả 2 số a và b đều không chia hết cho 3=>\(\hept{\begin{cases}a^2\equiv1\left(mod3\right)\\b^2\equiv1\left(mod3\right)\end{cases}}\) =>\(c^2\equiv2\left(mod3\right)\) => vô lí vì c^2 là số chính phương
=> trong 2 số a hoặc b luôn tồn tạo 1 số chia hết cho 3=> \(abc\equiv3\)
nếu cả2 số a,b đề lẻ=> c chẵn => abc chia hết cho 2
xét 1 trong 2 số a, b chẵn => abc chia hết cho 2
=> abc luôn chia hết cho 6( với a,b,c thỏa mãn đề bài) => ĐPCM)
Đặt a^2/c=x;b^2/a=y;c^2/b=z
a^2/c*b^2/a*c^2/y=x.y.z=1
c/a^2=; a/b^2=; a/c^2=
Ta có: x+y+z=1/x+1/y+1/z
x+y+z=xy+yz+zx/xyz=xy+xz+yz(1)
Lại có: (x-1)(y-1)(z-1)
=xyz-xy-yz-zx+x+y+z-1
=1-x-y-z+x+y+z-1 ( Do xyz=1 và xy+yz+zx=x+y+z)
=0
x-1, y-1 ,z-1 ít nhất 1 số bằng 0
Nếu x-1=0 x=1 a^2/c=1
a^2=c
Vậy....
A B C M K E H 1 2 3 1 1 2 1 2 3
Do ΔABC cân nên AM vừa là đường trung tuyến vừa là đường trung trực với cạnh BC
=> ΔAMB và ΔAMC vuông cân và bằng nhau
=> Góc C1= Góc A1
Xét ΔABH và ΔCAK có
BA=AC( ΔABC cân)
Góc B1=Góc A3 ( cùng phụ với góc BAK)
Đều _|_ AK
=> ΔCAK=ΔABH ( cạnh huyền góc nhọn)
=> Góc BAK = Góc CAK
Mà Góc C1= Góc A1
=> Góc A2= Góc C2
Xét 2 ΔAHM và ΔCKM có
AM=MC ( đường trung tuyến ứng với cạnh huyền)
Góc A2= Góc C2 (cmt)
AH=CK (vì ΔCAK=ΔABH)
=> ΔAHM = ΔCKM (c.g.c)
=>HM=MK=> ΔMHK cân tại M (1)
Ta lại có Góc M1= Góc M2
mà Góc M1+góc M3=90o
=> Góc M2+ Góc M3 = Góc HMK =90o (2)
Từ (1) Và (2) => ΔMHK vuông cân tại M
1,Ta có: Tam giác ABC là tam giác vuông cân
=> AB=AC
Mặt khác có:
mà => Lại có:Tam giác HBA vuông tại H và tam giác KAC vuông tại K
Từ ;; => tam giác HBA = tam giác KAC﴾Ch‐gn﴿
=>BH=AK﴾đpcm﴿
2,Ta có:AM là trung tuyến của tam giác cân => AM cũng là đường cao
Mặt khác:
mà => Tam giác AHM=tam giác CKM ﴾c.g.c﴿ vì
Có:AM=MC﴾AM là trung tuyến ứng với cạnh huyền﴿
AH=CK ﴾câu a﴿
=>MH=MK và
Ta có: ﴾AM là đường cao﴿
Từ ; => Góc HMK vuông
Kết hợp ;=> MHK là tam giác vuông cân
Do ab¯,ad¯ là các số nguyên tố nên b và d là các số lẻ khác 5 (1)
từ (gt) db¯+c=b^2+ d (2)
=> 10d+b+c=b^2 + d
=> 9d+c=b^2−b=b(b−1)
VT lớn hơn hoặc bằng 9 nên từ VP => b>3 mà b lẻ khác 5 nên b chỉ có thể bằng 7 hoặc 9
+Với b = 7 thì 9d+c=42 => 3<d<5 trái với (1)
+Với b= 9 thì 9d +c= 72 => 7<hoac = d<hoac=8, mà d lẻ nên d = 7
Thay vào (2) ta đc c = 9
Do a9¯, a7¯ cùng nguyên tố nên a chỉ có thể nhận các giá trị tương ứng 1,2,5,7,8 hoặc 1,3,4,6,9
=> a = 1 và abcd¯ = 1997, thử lại thấy thỏa mãn
∙2/(a+b)=2/(a2+b2)≥(a+b)2⇒a+b≤2
Do đó:
S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1
Do a ∈ Z + => 5b = a3 + 3a2 + 5 > a + 3 = 5c => 5b > 5c => b>c => 5b 5c => (a3 + 3a2 + 5) ( a+3) => a2 (a+3) + 5 a + 3
Mà a2 (a+3) a + 3 [do (a+3) (a+3)] => 5 a + 3 => a + 3 ∈ Ư (5) => a+ 3 ∈ { ± 1 ; ± 5 } (1) Do a ∈ Z+ => a + 3 ≥ 4 (2) Từ (1) và (2) => a + 3 = 5 => a = 5 – 3 =2
. => 23 + 3 . 22 + 5 = 55 25 = 5b 52 = 5b b = 2 2 + 3 = 5c 5 = 5c 5 = 5c c = 1 Vậy : a = 2 b = 2 c = 1
. => 23 + 3 . 22 + 5 = 55 25 = 5b 52 = 5b b = 2 2 + 3 = 5c 5 = 5c 5 = 5c c = 1 Vậy : a = 2 b = 2 c = 1