K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2023

                          Bài 1: 

   (1 - 2 + 3 - 4+ ... - 96 + 97 - 98 + 99).\(x\) = 2000

Đặt A = 1 - 2 + 3  - 4 +...- 96 + 97 - 98 + 99 

Xét dãy số: 1; 2; 3; 4;...;96; 97; 98; 99

Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1

Số số hạng của dãy số trên là: (99 - 1): 1 +  = 99

                  Vì 99 : 2 = 49 dư 1

Nhóm 2 số hạng liên tiếp của A thành một nhóm thì A là tổng của 49 nhóm và 99

A = 1 - 2 + 3  - 4 + ... - 96 + 97 - 98 + 99

A = (1- 2) + (3 - 4)+ ...+ (97 - 98) + 99

A =   - 1 + (-1) + (-1) +...+ (-1) + 99

A = -1.49 + 99

A = -49 + 99

A = 50 Thay A = 

Vậy 50.\(x\) = 2000

            \(x\) = 2000 : 50

             \(x\) = 40

       

 

 

           

 

      

5 tháng 12 2023

2, n và n + 1

Gọi ước chung lớn nhất của n và n + 1 là d

Ta có: n ⋮ d;  n + 1 ⋮ d 

⇒ n + 1  - n ⋮ d 

                1 ⋮ d

                d = 1

Vậy ƯCLN(n +1; n) = 1 Hay  n + 1; n là hai số nguyên tố cùng nhau (đpcm)

 

16 tháng 7 2017

nhân D vs 2^2 rồi lấy 2^2 D - D vậy là xong

 nhân S vs a^2 

15 tháng 9 2016

Có ai giúp mik hk zậy mình k cho

15 tháng 9 2016

i say

never

21 tháng 9 2015

\(S_1=1+2+3+...+N=\frac{N\left(N+1\right)}{2}\)

Tươn tự 

21 tháng 9 2015

S1 = \(\frac{N.\left(N+1\right)}{2}\)

S2 = 2S1 = N.(N+1)

S3 = \(\frac{\left(2n-1\right).2n.\left(2n+1\right)}{6}\)

6 tháng 2 2019

Bài 1:a)  |x - 3| = 2x + 4

=> \(\orbr{\begin{cases}x-3=2x+4\\x-3=-2x-4\end{cases}}\)

=> \(\orbr{\begin{cases}x-2x=4+3\\x+2x=-4+3\end{cases}}\)

=> \(\orbr{\begin{cases}-x=7\\3x=-1\end{cases}}\)

=> \(\orbr{\begin{cases}x=-7\\x=-\frac{1}{3}\end{cases}}\)

Vậy ...

b) Để M có giá trị nguyên thì 2n - 7 \(⋮\)n - 5 

   <=> 2(n - 5) + 3 \(⋮\)n - 5 

   <=> 3 \(⋮\)n - 5

  <=> n - 5 \(\in\)Ư(3) = {1; -1; 3; -3}

Lập bảng : 

n - 5 1 -1 3 -3
   n 6 4 8 2

Vậy ...

6 tháng 2 2019

cảm ơn bạn nhiều Kuruba Kaito

18 tháng 6 2015

mình làm bài 1 thôi. có **** k? nếu **** thì pm mình

9 tháng 8 2017

\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=2-\dfrac{1}{100}< 2\)

\(\Rightarrow\) \(S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

Vậy \(S< 2\left(đpcm\right).\)

9 tháng 8 2017

Câu 1 :

Ta có :

\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+..........+\dfrac{1}{100^2}\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

........................

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Leftrightarrow S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{99.100}\)

\(\Leftrightarrow S< 1+1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Leftrightarrow S< 1+1-\dfrac{1}{100}\)

\(\Leftrightarrow S< 2+\dfrac{1}{100}< 2\)

\(\Leftrightarrow S< 2\rightarrowđpcm\)