Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C A' B' C' M
Ta có ; \(\frac{MA'}{AA'}=\frac{S_{BMC}}{S_{ABC}}\) ; \(\frac{MB'}{BB'}=\frac{S_{AMC}}{S_{ABC}}\) ; \(\frac{MC'}{CC'}=\frac{S_{ABM}}{S_{ABC}}\)
\(\Rightarrow\frac{MA'}{AA'}+\frac{MB'}{BB'}+\frac{MC'}{CC'}=\frac{S_{BMC}+S_{AMC}+S_{AMB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)
Áp dụng bất đằng thức Cauchy : \(\frac{MA'}{AA'}.\frac{MB'}{BB'}.\frac{MC'}{CC'}\le\left(\frac{MA'+MB'+MC'}{3}\right)^3=\left(\frac{1}{3}\right)^2\)
\(\Rightarrow\frac{MA'}{AA'}.\frac{MB'}{BB'}.\frac{MC'}{CC'}\le\frac{1}{27}\). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}\frac{MA'}{AA'}=\frac{MB'}{BB'}=\frac{MC'}{CC'}\\\frac{MA'}{AA'}+\frac{MB'}{BB'}+\frac{MC'}{CC'}=1\end{cases}}\)\(\Rightarrow\frac{MA'}{AA'}=\frac{MB'}{BB'}=\frac{MC'}{CC'}=\frac{1}{3}\)
Vậy dấu "=" xảy ra khi M là trọng tâm của tam giác ABC.
vì\(\frac{KB}{KD}=\frac{1}{2}\)và AK cắt BC tại M nên\(\frac{MB}{MC}=\frac{1}{2}\)
\(\Rightarrow\frac{MC}{MB}=2\\\)
k đúng bạn ơi
mình biết đáp án =4 nhưng k biết làm nên mới hỏi
+ Kẻ DE // AM ( E thuộc BC )
+ Xét tam giác AMC có: DE // AM (c/v) => \(\frac{DC}{AC}\)= \(\frac{CE}{CM}\)( hệ quả định lí Ta-lét)
mà \(\frac{DC}{AC}\)= \(\frac{1}{2}\)( D là trung điểm của AC)
=> \(\frac{CE}{CM}\)=\(\frac{1}{2}\)(1)
+ Xét tm giác BDE có: DE / /MK ( DE // AM ) => \(\frac{BK}{KD}=\frac{BM}{ME}\)( định lí Ta-lét)
T/s: \(\frac{1}{2}=\frac{BM}{ME}\)(2)
+ Từ (1) và (2) => BM = \(\frac{1}{2}.\frac{1}{2}=\frac{1}{4}MC\)
=> \(\frac{MC}{MB}=4\)
Có MA+MB > AB
MB+MC > BC Bất đẳng thức trong tam giác
MA + MC > AC
Cộng vế với vết của 3 bất đẳng thức trên ta có2MA + 2MB + 2MC > AB + BC + AC = 3aMA + MB + MC > 3a/2 > a√3/2 (đfcm)