Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết, ta có:
\(x^3+y^3=4028\left(x^2-xy+y^2\right)\Leftrightarrow\frac{x^3+y^3}{x^2-xy+y^2}=4028\Leftrightarrow\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x^2-xy+y^2}=4028\Leftrightarrow x+y=4028\)
Lại có: \(x-y=2\)
nên \(x+y+x-y=4028+2\Leftrightarrow2x=4030\Leftrightarrow x=2015\)
Dễ dàng suy ra được \(y=2013\)
Vậy, \(x=2015;y=2013\)
câu 1:\(3^{30}=3^{3^{10}}=27^{10};5^{20}=5^{2^{10}}=25^{10}\)do 27>25 nên \(27^{10}>25^{10}\)hay \(3^{30}>5^{20}\)
câu 2: mình tạm chỉnh lại đề tý
\(\hept{\begin{cases}x^2=zy\left(1\right)\\y^2=xz\left(2\right)\\z^2=xy\left(3\right)\end{cases}}\)lấy (1) chia (2) và (2) chia (3) ta được\(\hept{\begin{cases}\frac{x^2}{y^2}=\frac{y}{x}\\\frac{y^2}{z^2}=\frac{z}{y}\end{cases}\Rightarrow\hept{\begin{cases}y^3=x^3\\y^3=z^3\end{cases}}\Rightarrow x^3=y^3=z^3\Rightarrow x=y=z}\)
câu 3:
\(\frac{x-1}{2009}-1+\frac{x-2}{2008}-1=\frac{x-3}{2007}-1+\frac{x-4}{2006}-1\)
\(\frac{x-2010}{2009}+\frac{x-2010}{2008}=\frac{x-2010}{2007}+\frac{x-2010}{2006}\)
\(\left(x-2010\right).\left(\frac{1}{2009}+\frac{1}{2008}\right)=\left(x-2010\right).\left(\frac{1}{2007}+\frac{1}{2006}\right)\)
Do đó để 2 vế bằng nhau thì x-2010=0=>x=2010
câu 4: vì x và y là hai đại lượng tỉ lệ nghịch nên ta có Công thức \(x.y=x_1.y_1=x_2.y_2=k\Leftrightarrow2.y_1=3.y_2\Rightarrow y_1=\frac{3}{2}y_2\)
thay \(y_1=\frac{3}{2}y_2\)vào phương trình \(y^2_1+y^2_2=52\)
\(\frac{9}{4}y_2^2+y_2^2=52\Rightarrow\frac{13}{4}y_2^2=52\Rightarrow\hept{\begin{cases}y_2=4\\y_2=-4\end{cases}}\Rightarrow\hept{\begin{cases}y_1=6\\y_1=-6\end{cases}}\)
Đặt biểu thức là A
\(x^2+xy+y^2-3x-3y+2018\)
\(=\left(x^2+xy+y^2\right)-\left(3x+3y\right)+2018\)
\(=\left(x+y\right)^2-3\left(x+y\right)+2018\)
Ta có : (x - y)² ≥ 0
<=> x² + y² ≥ 2xy
<=> x² + 2xy + y² ≥ 4xy
<=> (x + y)² ≥ 4xy
<=> xy ≤ (x + y)²/4
<=> -xy ≥ -(x + y)²/4
--> A ≥ (x + y)² - 3(x + y) - (x + y)²/4
<=> A ≥ 3(x + y)²/4 - 3(x + y)
để dễ nhìn,ta đặt t = x + y
--> A ≥ 3t²/4 - 3t = 3(t²/4 - 2.t/2 + 1) - 3 = 3(t/2 - 1)² - 3 ≥ -3
Dấu " = " xảy ra <=> t/2 = 1 <=> t = 2 <=> x + y = 2 và x = y --> x = y = 1
Vậy MinA = -3 <=> x = y = 1
nhân 2 vào P rồi tách thành HĐT là ra