K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2019

24 tháng 5 2017

(C) có tâm \(I\left(-1;2\right)\), bán kính \(R=4\), (C') có tâm \(I'\left(10;-5\right)\), bán kính \(R'=4\). Vậy \(\left(C'\right)=T_{\overrightarrow{v}}\left(C\right),\overrightarrow{v}=\overrightarrow{II}=\left(11;-7\right)\)

16 tháng 7 2018

Đáp án B

17 tháng 8 2019

đường tăng à ?

27 tháng 8 2019

Là sao

15 tháng 10 2022

Tọa độ A' là:

\(\left\{{}\begin{matrix}x=-2+3=1\\y=3-2=1\end{matrix}\right.\)

Lấy B(0;-2) thuộc (d)

=>Tọa độ B' là: \(\left\{{}\begin{matrix}x=0+3=3\\y=-2-2=-4\end{matrix}\right.\)

Thay x=3 và y=-4 vào (d'): 4x+3y+c=0, ta được:

c+12-12=0

=>c=0

(C): (x-3)^2+(y-1)^2=9

=>R=3 và I(3;1)

=>I'(5;-5)

=>(C'): (x-5)^2+(y+5)^2=9

NV
22 tháng 7 2020

4.

Để phép tịnh tiến theo \(\overrightarrow{v}\) biến d thành chính nó thì \(\overrightarrow{v}\) phải là 1 vecto chỉ phương của d

Khi đó \(\overrightarrow{v}=k\left(1;2\right)\) với k là số thực

5.

Đường tròn tâm \(I\left(2;1\right)\) bán kính \(R=4\)

Phép tịnh tiến theo \(\overrightarrow{v}\) biến đường tròn thành đường tròn tâm I' bán kính R=4

\(I'=T_{\overrightarrow{v}}\left(I\right)\Rightarrow\left\{{}\begin{matrix}x_{I'}=2+1=3\\y_{I'}=3+1=4\end{matrix}\right.\) \(\Rightarrow I'\left(3;4\right)\)

Phương trình đường tròn: \(\left(x-3\right)^2+\left(y-4\right)^2=16\)

10 tháng 6 2018

câu 1 : bài này có thể giải với nhiều loại cách khác nhau ; giờ mk sẽ giải cho bn bài này với 2 cách .

\(cách_1:\) vì đường tròn \(\left(x-2\right)^2+\left(y-1\right)^2=16\) là ảnh của đường tròn cần tìm được tịnh tiến theo \(\overrightarrow{v}\left(1;3\right)\)

nên ta lấy ảnh của đường tròn này tịnh tiến với véc tơ đối của \(\overrightarrow{v}\) là xong

ta có : \(\overrightarrow{n}\left(-1;-3\right)=-\overrightarrow{v}\left(1;3\right)\)

theo công thức ta có \(\left\{{}\begin{matrix}x'=x-1\\y'=y-3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=y'+1\\x=x'+3\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)^2+\left(y-1\right)^2=16\)

\(\Leftrightarrow\left(x'+1-2\right)^2+\left(y'+3-1\right)^2=16\)

\(\Leftrightarrow\left(x'-1\right)^2+\left(y'+2\right)^2=16\)

vậy đường tròn lúc đầu có phương trình \(\left(x-1\right)^2+\left(y+2\right)^2=16\)

\(cách_2:\)vì là ảnh nên \(x;y\) trong \(\left(x-2\right)^2+\left(y-1\right)^2=16\)\(x';y'\) trong công thức .

theo công thức ta có : \(\left\{{}\begin{matrix}x'=x+1\\y'=y+3\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)^2+\left(y-1\right)^2=16\)

\(\Leftrightarrow\left(x+1-2\right)^2+\left(y+3-1\right)^2=16\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=16\)

vậy đường tròn lúc đầu có phương trình \(\left(x-1\right)^2+\left(y+2\right)^2=16\)

(bn chú ý \(x;y\)\(x';y'\) trong 2 cách làm là khác nhau nha ; mk có giải thích ở trên) .

câu 2 : với \(T_{\overrightarrow{v}}\left(A\right)\)

theo công thức ta có : \(\left\{{}\begin{matrix}x'=x+a\\y'=y+b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x'=1+1=2\\y'=6+5=11\end{matrix}\right.\)

\(\Rightarrow C\left(2;11\right)\)

với \(T_{\overrightarrow{v}}\left(B\right)\)

theo công thức ta có : \(\left\{{}\begin{matrix}x'=x+a\\y'=y+b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x'=-1+1=0\\y'=-4+5=1\end{matrix}\right.\)

\(\Rightarrow D\left(0;1\right)\)

vậy điểm \(C\left(2;11\right);D\left(0;1\right)\)

17 tháng 9 2021

câu 1 sai cả hai cách rồi bạn êy

1. Trg mp Oxy, cho đt d: x - y + 4 = 0. Hỏi trg các đt sau đt nào có thể biến thành d qua 1 phép đối xứng tâm? a. 2x + y - 4 = 0 b. x + y - 1 = 0 c. 2x - 2y + 1 = 0 d. 2x + 2y - 3 = 0 2. Cho 2 đt (C): \(x^2+y^2=1\) và (C'): \(\left(x-4\right)^2+\left(y-2\right)^2=1\). Tìm tọa độ tâm đối xứng biến (C) thành (C') 3. Trg mp Oxy cho điểm M (2;1). Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối...
Đọc tiếp

1. Trg mp Oxy, cho đt d: x - y + 4 = 0. Hỏi trg các đt sau đt nào có thể biến thành d qua 1 phép đối xứng tâm?

a. 2x + y - 4 = 0 b. x + y - 1 = 0 c. 2x - 2y + 1 = 0 d. 2x + 2y - 3 = 0

2. Cho 2 đt (C): \(x^2+y^2=1\) và (C'): \(\left(x-4\right)^2+\left(y-2\right)^2=1\). Tìm tọa độ tâm đối xứng biến (C) thành (C')

3. Trg mp Oxy cho điểm M (2;1). Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối xứng tâm O và phép tịnh tiến the \(\overrightarrow{v}=\left(2;3\right)\) biến điểm M thành điểm nào trg các điểm sau?

a. (1;3) b. (2;0) c. (0;2) d. (4;4)

4. Trg mp Oxy cho đt d có pt: x + y - 2 = 0. Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối xứng tâm O và phép tịnh tiến theo vecto \(\overrightarrow{v}=\left(3;2\right)\) biến đt d thành đt nà trg các đt sau?

a. 3x + 3y - 2 = 0 b. x - y + 2 = 0 c. x + y + 2 = 0 d. x + y - 3 = 0

5. Trg mp Oxy cho đt (C) có pt: \(\left(x-1\right)^2+\left(y+2\right)^2=4\). Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối cứng qua tâm O và phép tịnh tiến theo vecto \(\overrightarrow{v}=\left(2;3\right)\) biến (C) thành đt nào trg các đt có pt sau?

a. \(x^2+y^2=4\) b. \(\left(x-2\right)^2+\left(y-6\right)^2=4\) c. \(\left(x-2\right)^2+\left(x-3\right)^2=4\) d. Đáp án khác

0