Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=-3x^2+18x+5=-3\left(x-3\right)^2+32\le32\)
\(\Rightarrow\) Tiếp tuyến có hệ số góc lớn nhất bằng 32 tại điểm có hoành độ \(x=3\)
\(y\left(3\right)=65\)
Tiếp tuyến: \(y=32\left(x-3\right)+65\Rightarrow y=32x-31\)
Chủ câu hỏi còn sống kh ặk=))?Eoo ôi bài khó tkế,tuii kh bíc làmm đôuu nòoo,còn sống thỳy nkắnn tin vớii tuii cko vuii nèeee<333
Câu 2:
\(f'\left(x\right)=\frac{-3}{\left(2x-1\right)^2}\)
a/ \(x_0=-1\Rightarrow\left\{{}\begin{matrix}f'\left(x_0\right)=-\frac{1}{3}\\f\left(x_0\right)=0\end{matrix}\right.\)
Pttt: \(y=-\frac{1}{3}\left(x+1\right)=-\frac{1}{3}x-\frac{1}{3}\)
b/ \(y_0=1\Rightarrow\frac{x_0+1}{2x_0-1}=1\Leftrightarrow x_0+1=2x_0-1\Rightarrow x_0=2\)
\(\Rightarrow f'\left(x_0\right)=-\frac{1}{3}\)
Pttt: \(y=-\frac{1}{3}\left(x-2\right)+1\)
c/ \(x_0=0\Rightarrow\left\{{}\begin{matrix}f'\left(x_0\right)=-3\\y_0=-1\end{matrix}\right.\)
Pttt: \(y=-3x-1\)
d/ \(6x+2y-1=0\Leftrightarrow y=-3x+\frac{1}{2}\)
Tiếp tuyến song song d \(\Rightarrow\) có hệ số góc bằng -3
\(\Rightarrow\frac{-3}{\left(2x_0-1\right)^2}=-3\Rightarrow\left(2x_0-1\right)^2=1\Rightarrow\left[{}\begin{matrix}x_0=0\Rightarrow y_0=-1\\x_0=1\Rightarrow y_0=2\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-3x-1\\y=-3\left(x-1\right)+2\end{matrix}\right.\)
Làm câu 1,3 trước, câu 2 hơi dài tối rảnh làm sau:
1/ \(\lim\limits\frac{n^2+2n+1}{2n^2-1}=lim\frac{1+\frac{2}{n}+\frac{1}{n^2}}{2-\frac{1}{n^2}}=\frac{1}{2}\)
\(\lim\limits_{x\rightarrow0}\frac{2\sqrt{x+1}-x^2+2x+2}{x}=\frac{2-0+0+2}{0}=\frac{4}{0}=+\infty\)
Chắc bạn ghi nhầm đề, câu này biểu thức tử số là \(...-x^2+2x-2\) thì hợp lý hơn
3/ \(y'=2sin2x.\left(sin2x\right)'=4sin2x.cos2x=2sin4x\)
b/ \(y'=4x^3-4x\)
c/ \(y'=\frac{3\left(x+2\right)-1\left(3x-1\right)}{\left(x+2\right)^2}=\frac{7}{\left(x+2\right)^2}\)
d/ \(y'=10\left(x^2+x+1\right)^9\left(x^2+x+1\right)'=10\left(x^2+x+1\right)^9.\left(2x+1\right)\)
e/ \(y'=\frac{\left(2x^2-x+3\right)'}{2\sqrt{2x^2-x+3}}=\frac{4x-1}{2\sqrt{2x^2-x+3}}\)
y' = 3x2 +2x +1
a. y' <= 6
<=> 3x2 + 2x +1 <=6
<=.> \(\dfrac{-5}{3}\) <= x <= 1
B. K=6
<=> 3x2 + 2x +1 = 6
<=> \(\left[{}\begin{matrix}x=1\\x=\dfrac{-5}{3}\end{matrix}\right.\)
với x= 1 => y= -2
vập pttt: y = 6 (x-1) -2
<=> y = 6x - 8
với x=\(\dfrac{-5}{3}\) => y = \(\dfrac{-230}{27}\)
vập pttt : y= 6( x + \(\dfrac{5}{3}\) ) - \(\dfrac{230}{27}\)
<=> y = 6x + \(\dfrac{40}{27}\)
a) từ công thức \(\left\{{}\begin{matrix}X'=X+a\\Y'=Y+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}X=X'-a\\Y=Y'-b\end{matrix}\right.\)
ta \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{\sqrt{2}}=x+a\\y=y+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\left(\dfrac{-2+\sqrt{2}}{2}\right)x\\b=0\end{matrix}\right.\)
vậy phép biến hình biến đồ thị \(y=x^2\) thành \(y=\dfrac{x^2}{2}\) là \(T_{\overrightarrow{u}}\left(y=x^2\right)\)
với \(\overrightarrow{u}:\left(\left(\dfrac{-2+\sqrt{2}}{2}\right)x;0\right)\)
bạn làm tương tự cho câu b nha