K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2018

a) từ công thức \(\left\{{}\begin{matrix}X'=X+a\\Y'=Y+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}X=X'-a\\Y=Y'-b\end{matrix}\right.\)

ta \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{\sqrt{2}}=x+a\\y=y+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\left(\dfrac{-2+\sqrt{2}}{2}\right)x\\b=0\end{matrix}\right.\)

vậy phép biến hình biến đồ thị \(y=x^2\) thành \(y=\dfrac{x^2}{2}\)\(T_{\overrightarrow{u}}\left(y=x^2\right)\)

với \(\overrightarrow{u}:\left(\left(\dfrac{-2+\sqrt{2}}{2}\right)x;0\right)\)

bạn làm tương tự cho câu b nha

NV
16 tháng 6 2020

\(y'=-3x^2+18x+5=-3\left(x-3\right)^2+32\le32\)

\(\Rightarrow\) Tiếp tuyến có hệ số góc lớn nhất bằng 32 tại điểm có hoành độ \(x=3\)

\(y\left(3\right)=65\)

Tiếp tuyến: \(y=32\left(x-3\right)+65\Rightarrow y=32x-31\)

27 tháng 3 2022

Chủ câu hỏi còn sống kh ặk=))?Eoo ôi bài khó tkế,tuii kh bíc làmm đôuu nòoo,còn sống thỳy nkắnn tin vớii tuii cko vuii nèeee<333

NV
4 tháng 6 2020

Câu 2:

\(f'\left(x\right)=\frac{-3}{\left(2x-1\right)^2}\)

a/ \(x_0=-1\Rightarrow\left\{{}\begin{matrix}f'\left(x_0\right)=-\frac{1}{3}\\f\left(x_0\right)=0\end{matrix}\right.\)

Pttt: \(y=-\frac{1}{3}\left(x+1\right)=-\frac{1}{3}x-\frac{1}{3}\)

b/ \(y_0=1\Rightarrow\frac{x_0+1}{2x_0-1}=1\Leftrightarrow x_0+1=2x_0-1\Rightarrow x_0=2\)

\(\Rightarrow f'\left(x_0\right)=-\frac{1}{3}\)

Pttt: \(y=-\frac{1}{3}\left(x-2\right)+1\)

c/ \(x_0=0\Rightarrow\left\{{}\begin{matrix}f'\left(x_0\right)=-3\\y_0=-1\end{matrix}\right.\)

Pttt: \(y=-3x-1\)

d/ \(6x+2y-1=0\Leftrightarrow y=-3x+\frac{1}{2}\)

Tiếp tuyến song song d \(\Rightarrow\) có hệ số góc bằng -3

\(\Rightarrow\frac{-3}{\left(2x_0-1\right)^2}=-3\Rightarrow\left(2x_0-1\right)^2=1\Rightarrow\left[{}\begin{matrix}x_0=0\Rightarrow y_0=-1\\x_0=1\Rightarrow y_0=2\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-3x-1\\y=-3\left(x-1\right)+2\end{matrix}\right.\)

NV
4 tháng 6 2020

Làm câu 1,3 trước, câu 2 hơi dài tối rảnh làm sau:

1/ \(\lim\limits\frac{n^2+2n+1}{2n^2-1}=lim\frac{1+\frac{2}{n}+\frac{1}{n^2}}{2-\frac{1}{n^2}}=\frac{1}{2}\)

\(\lim\limits_{x\rightarrow0}\frac{2\sqrt{x+1}-x^2+2x+2}{x}=\frac{2-0+0+2}{0}=\frac{4}{0}=+\infty\)

Chắc bạn ghi nhầm đề, câu này biểu thức tử số là \(...-x^2+2x-2\) thì hợp lý hơn

3/ \(y'=2sin2x.\left(sin2x\right)'=4sin2x.cos2x=2sin4x\)

b/ \(y'=4x^3-4x\)

c/ \(y'=\frac{3\left(x+2\right)-1\left(3x-1\right)}{\left(x+2\right)^2}=\frac{7}{\left(x+2\right)^2}\)

d/ \(y'=10\left(x^2+x+1\right)^9\left(x^2+x+1\right)'=10\left(x^2+x+1\right)^9.\left(2x+1\right)\)

e/ \(y'=\frac{\left(2x^2-x+3\right)'}{2\sqrt{2x^2-x+3}}=\frac{4x-1}{2\sqrt{2x^2-x+3}}\)

1/ tiếp tuyến của đồ thị hàm số y= x3 -3x2 +1 có hệ số góc nhỏ nhất là đường thẳng? 2/ cho hàm số y= \(\frac{2x-3}{x-2}\) có đồ thị (C). Một tiếp tuyến của (C) cắt hai tiệm cận của (C) tại hai điểm A, B và AB=\(2\sqrt{2}\). Tính hệ số góc tiếp tuyến đó. 3/ cho hàm số y= \(\frac{-x+2}{x-1}\) có đồ thị (C) và điểm A(a;1). Gọi S là tập hợp tất cả các giá trị thực của a để có đúng một...
Đọc tiếp

1/ tiếp tuyến của đồ thị hàm số y= x3 -3x2 +1 có hệ số góc nhỏ nhất là đường thẳng?

2/ cho hàm số y= \(\frac{2x-3}{x-2}\) có đồ thị (C). Một tiếp tuyến của (C) cắt hai tiệm cận của (C) tại hai điểm A, B và AB=\(2\sqrt{2}\). Tính hệ số góc tiếp tuyến đó.

3/ cho hàm số y= \(\frac{-x+2}{x-1}\) có đồ thị (C) và điểm A(a;1). Gọi S là tập hợp tất cả các giá trị thực của a để có đúng một tiếp tuyến của (C) đi qua A. Tổng giá trị tất cả phần tử của S là?

4/ cho hàm số g(x) = f2(sinx), biết f'(\(\frac{1}{2}\)) = f(\(\frac{1}{2}\)) = 2. Tính g'(\(\frac{\pi}{6}\))

5/ cho hàm số y= f(x) có đạo hàm y' = f'(x) liên tục trên R và hàm số y= g(x) với g(x)=f(4-x3). Biết rằng tập các giá trị của x để f'(x)<0 là (-4;3). Tập các giá trị của x đẻ g'(x)>0 là?

0
12 tháng 5 2017

y' = 3x2 +2x +1

a. y' <= 6

<=> 3x2 + 2x +1 <=6

<=.> \(\dfrac{-5}{3}\) <= x <= 1

B. K=6

<=> 3x2 + 2x +1 = 6

<=> \(\left[{}\begin{matrix}x=1\\x=\dfrac{-5}{3}\end{matrix}\right.\)

với x= 1 => y= -2

vập pttt: y = 6 (x-1) -2

<=> y = 6x - 8

với x=\(\dfrac{-5}{3}\) => y = \(\dfrac{-230}{27}\)

vập pttt : y= 6( x + \(\dfrac{5}{3}\) ) - \(\dfrac{230}{27}\)

<=> y = 6x + \(\dfrac{40}{27}\)