\(\frac{a}{b}\)nhỏ nhất khác 0 sao cho khi chia 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

Dù đăng cách đây lâu rồi nhưng vẫn thích làm bài anh Tú đăng :P

Theo đề bài ta có:

\(\dfrac{a}{b}_{MIN}\)

\(\Rightarrow a_{MIN};b_{MAX}\)

\(\dfrac{a}{b}:\dfrac{9}{14}=N\Rightarrow\dfrac{a}{b}.\dfrac{14}{9}=N\Rightarrow a\in B\left(9\right);b\inƯ\left(14\right)\)

\(\dfrac{a}{b}:\dfrac{21}{35}=N\Rightarrow\dfrac{a}{b}.\dfrac{35}{21}=N\Rightarrow a\in B\left(21\right);b\inƯ\left(35\right)\)

\(a_{MIN}\Rightarrow a\in BCNN\left(9;21\right)\Rightarrow a=63\)

\(b_{MAX}\Rightarrow b\in UCLN\left(14;35\right)\Rightarrow b=7\)\(\)

Phân số cần tìm là \(\dfrac{63}{7}\)

25 tháng 3 2020

ta có \(\frac{a}{b}.\frac{35}{24}=\frac{35a}{24b};\frac{a}{b}.\frac{15}{16}=\frac{15a}{16b}\)

=> \(\hept{\begin{cases}a⋮24,16\\b\inƯ\left(35,15\right)\end{cases}}\)

ta có \(\frac{a}{b}\)nhỏ nhất \(\Leftrightarrow a=BCNN\left(24,16\right)=48\)

zà \(b=UCLN\left(35,15\right)=5\)

zậy phân số \(\frac{a}{b}\)cần tìm là \(\frac{48}{5}\)

29 tháng 2 2020

1 ) Vì số nguyên tố chỉ có 2 ước tự nhiên là 1 và chính nó 

Để \(\left(n+3\right)\left(n+1\right)\)là nguyên tố

\(\Rightarrow n+1=1,n+3\)là số nguyên tố do \(n+3>n+1\)

\(n=0\Rightarrow\left(n+3\right)\left(n+1\right)=3\)

\(\Rightarrow n=0\)( chọn )

29 tháng 2 2020

2 ) Tổng 7a5 + 8b4 chia hết cho 9 nên 7 + a + 5 + 8 + b + 4 \(⋮\) 9 , tức là :

24 + a + b \(⋮\) 9 . Suy ra a + b \(\in\){ 3 ; 12 } .

Ta có a + b > 3 ( vì a – b = 6 ) nên a + b = 12 .

Từ a + b = 12 và a – b = 6 , ta có a = ( 12 + 6 ) : 2 = 9  

Suy ra b = 3 .

Thử lại : 795 + 834 = 1629 chia hết cho 9 .

29 tháng 3 2017

mk tịt