Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4+\dfrac{1}{4}\right)\left(a^2+\dfrac{1}{b+c}\right)\ge\left(2a+\dfrac{1}{2\sqrt{b+c}}\right)^2\)
\(\Rightarrow\sqrt{a^2+\dfrac{1}{b+c}}\ge\dfrac{2}{\sqrt{17}}\left(2a+\dfrac{1}{2\sqrt{b+c}}\right)=\dfrac{1}{\sqrt{17}}\left(4a+\dfrac{1}{\sqrt{b+c}}\right)\)
Tương tự:
\(\sqrt{b^2+\dfrac{1}{a+c}}\ge\dfrac{1}{\sqrt{17}}\left(4b+\dfrac{1}{\sqrt{a+c}}\right)\) ; \(\sqrt{c^2+\dfrac{1}{a+b}}\ge\dfrac{1}{\sqrt{17}}\left(4c+\dfrac{1}{\sqrt{a+b}}\right)\)
Cộng vế:
\(VT\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}+\dfrac{1}{\sqrt{c+a}}\right)\)
\(VT\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}}\right)\)
Cũng theo Bunhiacopxki:
\(1.\sqrt{a+b}+1.\sqrt{b+c}+1\sqrt{c+a}\le\sqrt{\left(1+1+1\right)\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\)
\(\Rightarrow VT\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{6\left(a+b+c\right)}}\right)\)
\(VT\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}\left(a+b+c\right)+\dfrac{a+b+c}{8}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}\right)\)
\(VT\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}.6+3\sqrt[3]{\dfrac{81\left(a+b+c\right)}{32.6\left(a+b+c\right)}}\right)=\dfrac{3\sqrt{17}}{2}\)
Dấu "=" xảy ra khi \(a=b=c=2\)
1.
|x-9|=2x+5
x<9; x-9=-2x-5
3x=4=>x=4/3(n)
x≥9; x-9=2x+5=> x=-14(l)
2.a
A=2x-5≥0<=>2x≥5; x≥5/2
1. a) / x - 9 / = 2x + 5
Do : / x - 9 / ≥ 0 ∀x
⇒2x + 5 ≥ 0
⇔ x ≥ \(\dfrac{-5}{2}\)
Bình phương cả hai vế của phương trình , ta được :
( x - 9)2 = ( 2x + 5)2
⇔ ( x - 9)2 - ( 2x + 5)2 = 0
⇔ ( x - 9 - 2x - 5)( x - 9 + 2x + 5) = 0
⇔ ( - x - 14)( 3x - 4) = 0
⇔ x = - 14 ( KTM) hoặc : x = \(\dfrac{4}{3}\) ( TM)
KL....
b) Mạn phép làm luôn , ko chép lại đề :
\(\dfrac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{4\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-5}{\left(x-3\right)\left(x+3\right)}\) ( x # 3 ; x # - 3)
⇔ 5x + 15 + 4x - 12 = x - 5
⇔ 9x + 3 = x - 5
⇔ 8x = - 8
⇔ x = -1 ( TM)
KL....
a: =>-12x>12
hay x<-1
b: =>7(3x-1)-252>=21x+3(6x+1)
=>21x-7-252>=21x+18x+3
=>18x+3<=-259
=>18x<=-262
hay x<=-131/9
c: =>3(3x+5)-24x<=48+4(x+8)
=>9x+15-24x<=48+4x+32=4x+80
=>-15x+24<=4x+80
=>-19x<=56
hay x>=-56/19
b) \(\dfrac{5\left(4x-1\right)}{15}-\dfrac{2-x}{15}-\dfrac{3\left(10x-3\right)}{15}\le0\)
\(\Leftrightarrow\dfrac{20x-5-2+x-30x+9}{15}\le0\)
\(\Rightarrow-9x+2\le0\)
\(\Leftrightarrow-9x\le-2\)
\(\Rightarrow-9x.\dfrac{-1}{9}\ge-2.\dfrac{-1}{9}\)
\(\Leftrightarrow x\ge\dfrac{2}{9}\)
câu a ,không hiểu đề
a)
\(\left(x-3\right)^2< x^2-5x+4\)
\(\Leftrightarrow x^2-6x+9< x^2-5x+4\)
\(\Leftrightarrow x^2-x^2-6x+5x< 4-9\)
\(\Leftrightarrow-x>-5\)
\(\Leftrightarrow x>5\)
Vây...
b)
\(\left(x-3\right)\left(x+3\right)\le\left(x+2\right)^2+3\)
\(\Leftrightarrow x^2-9\le x^2+4x+9\)
\(\Leftrightarrow x^2-x^2-4x\le9+9\)
\(\Leftrightarrow-4x\le18\)
\(\Leftrightarrow x\ge-4,5\)
Vậy....
Bạn tự biểu diễn trên trục số ha!
c)
\(\dfrac{4x-7}{3}>\dfrac{7-x}{5}\)
\(\Leftrightarrow15.\dfrac{4x-5}{3}< 15.\dfrac{7-x}{5}\)
\(\Leftrightarrow5.\left(4x-5\right)< 3.\left(7-x\right)\)
\(\Leftrightarrow24x-25< 21-3x\)
\(\Leftrightarrow20x+3x< 21+25\)
\(\Leftrightarrow23x< 46\)
\(\Leftrightarrow x< 2\)
Vậy...
d)
\(\dfrac{x+2}{x-3}< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2< 0\\x-3< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>-2\\x< 3\end{matrix}\right.\)
Vậy...