Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\left(x\right)=x^{19}+x^5+x^{1996}.\)
\(Q\left(x\right)=x^2-1\)
Phép chia có dư
=> \(A\left(x\right)=Q\left(x\right)+r\)
\(x^{19}+x^5-x^{1995}=x^2-1+r\)
Với x=1 => \(1+1-1=1-1+r\)\(\Rightarrow r=1\)
Với x=-1 => \(-1+-1-\left(-1\right)=1-1+r\Rightarrow r=-1\)
Vậy số dư của phép chia đó là 1,-1
đây là định bí Bơ Du nha bạn
Gọi thương của phép chia \(x^{19}+x^5-x^{1995}\) cho \(x^2-1\)là \(A\left(x\right)\)và số dư là \(ax+b\) (do đa thức chia bậc 2)
Ta có: \(f\left(x\right)=x^{19}+x^5-x^{1995}=\left(x^2-1\right)A\left(x\right)+ax+b\)
\(=\left(x-1\right)\left(x+1\right)A\left(x\right)+ax+b\)
Do đa thức trên luôn đúng với mọi x nên lần lượt thay \(x=1;\)\(x=1\)ta được:
\(\hept{\begin{cases}a+b=1\\-a+b=-1\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}a=1\\b=0\end{cases}}\)
Vậy đa thức dư là \(x\)
x2+(x+y)2=(x+9)2
x2+x2+2xy+y2=x2+18x+81
x2+x2+2xy+y2-x2-18x-81=0
x2+2xy+y2-18x-81=0
het biet roi
Ta có: x^2+(x+y)^2=(x+9)^2
=>x^2+x^2+2xy+y^2=x^2+18x+81
=>2x^2+2xy+y^2=x^2+18x+81
=>2x^2+2xy+y^2-x^2-18x-81=0
=>(x^2+2xy+y^2)-18(x+1)-99=0
=>(x+1)^2-18(x+1)-99=0
=>(x+1)(x+1-18)-99=0
=>(x+1)(x-17)-99=0
=>(x+1)(x-17)=99
=>(x+1)(x-17)=1*99=3*33=......
=>x=tự tính nốt
=>
a,Gọi Đa thức dư là ax+b,thương là Q(x)
Ta có:f(x)=1+x+x19+x199+x2019
=(1-x2)Q(x)+Q(x)+b
=>1+x+x19+x199+x2019=(1-x)(1+x)Q(x)+ax+b (1)
Vì (1) đúng với mọi x,thay x=1 và x=-1 ta đc:
1+1+119+1199+12019=a+b
<=>a+b=5(*)
Với x=1 ta có:
1+(-1)+(-1)99+(-1)199+(-1)2019=a(-1)+b
<=>-a+b=-3(**)
Cộng (*) và (**) vế theo vế ta đc:2b=2=>b=1
Thay b=1 vào (*) ta đc:a=4
Vậy đa thức dư là 4x+1
b,Ta có:(x+1)(x+3)(x+5)(x+7)+2019
=(x+1)(x+7)(x+5)(x+3)+2019
=(x2+8x+7)(x2+8x+15)+2019
=(x2+8x+12-5)(x2+8x+12+3)+2019
=(x2+8x+12)2-2(x2+8x+12)-15+2019
=(x2+8x+12)2-2(x2+8x+12)+2004