Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 + 2. ( m- 1 ) .x - 4 = 0
\(\Delta'=\left(m-1\right)^2+4>0\)
=> Với \(\forall\)m thì phương trình đều có 2 nghiệm phân biệt
x1 = - ( m - 1 ) + \(\sqrt{\left(m-1\right)^2+4}\)
\(x_2=-\left(m-1\right)-\sqrt{\left(m-1\right)^2+4}\)
Để x1 và x2 là 1 số nguyên thì m phải là số nguyên và \(\sqrt{\left(m-1\right)^2+4}\)là số nguyên .
Có \(\left(m-1\right)^2\ge0\)
\(\Rightarrow\left(m-1\right)^2+4\ge4\)
\(\Rightarrow\sqrt{\left(m-1\right)^2+4}\ge2\)
\(\Rightarrow\left(m-1\right)^2+4=4\Rightarrow m=1\)
Vậy m = 1
\(x-2008=X;y-2009=Y;z-2010=Z\)
\(\sqrt{X}+\sqrt{Y}+\sqrt{Z}+3012=\frac{1}{2}\left(X+Y+Z+2008+2009+2010\right)\)
\(2.\sqrt{X}+2\sqrt{Y}+2\sqrt{Z}+2.3012=X+Y+Z+2009\cdot3\)
\(\left(X-2\sqrt{X}+1\right)+\left(Y-2\sqrt{Y}+1\right)+\left(Z-2\sqrt{Z}+1\right)+3.2008=2.3012\)
\(\left(\sqrt{X}-1\right)^2+\left(\sqrt{Y}-1\right)^2+\left(\sqrt{Z}-1\right)^2=2.3012-3.2008=0\)
\(X=1;Y=1;Z=1\Rightarrow x=2009;y=2010;z=2011\)