K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí nhỏ Fermat vào biểu thức \(n^5-n\), ta được:

\(n^5-n⋮5\)(vì 5 là số nguyên tố)

Ta có: \(n^5-n\)

\(=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)\)

Vì n-1 và n là hai số nguyên liên tiếp nên \(\left(n-1\right)\cdot n⋮2\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)

Vì n-1; n và n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3\)

\(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)(cmt)

và ƯCLN(2;3)=1

nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\cdot3\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)⋮6\)

hay \(n^5-n⋮6\)

\(n^5-n⋮5\)(cmt)

và ƯCLN(6;5)=1

nên \(n^5-n⋮6\cdot5\)

hay \(n^5-n⋮30\)(đpcm)

23 tháng 10 2016

khong hieu

ban oi

tk nhe@@@@@@@@@

xin do

bye$$

14 tháng 3 2020

\(p^2+2p+5=p^2+4p-2p-8+13=\left(p^2+4p\right)-\left(2p+8\right)+13\)

\(=p\left(p+4\right)-2\left(p+4\right)+13=\left(p-2\right)\left(p+4\right)+13\)

Vì \(\left(p-2\right)\left(p+4\right)⋮p+4\)\(\Rightarrow\)Để \(p^2+2p+5⋮p+4\)thì \(13⋮p+4\)

\(\Rightarrow p+4\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)\(\Rightarrow p\in\left\{-17;-5;-3;9\right\}\)

Vậy \(p\in\left\{-17;-5;-3;9\right\}\)

22 tháng 2 2019

Câu 1 :            Giải

* Nếu n chia 5 dư 1 thì n2 chia 5 dư 1

\(\Rightarrow\left(n^2+4\right)⋮5\)

* Nếu n chia 5 dư 4 thì n2 chia 5 dư 4

\(\Rightarrow\left(n^2+1\right)⋮5\)

\(\Rightarrow\left(n^2+1\right)\left(n^2+4\right)⋮5\)

Từ đó suy ra \(n\left(n^2+1\right)\left(n^2+4\right)⋮5\)( đpcm )

Câu 2 :              Giải

Ta có : \(n^2+4n^2+5=5n^2+5=5\left(n^2+1\right)\)

\(\Rightarrow n^2+4n^2+5=\overline{...5}\)

\(\Rightarrow\)\(\Rightarrow n^2+4n^2+5\) không chia hết cho 8 ( đpcm )

17 tháng 8 2020

Bài 2:

a) \(\left(n^2+3n-1\right)\left(n+2\right)-n^3-2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3-2\)

\(=5n^2+5n-4\)

Mà 5n2 + 5n chia hết cho 5 mà 4 không chia hết cho 5

=> \(5n^2+5n-4\) không chia hết cho 5

=> điều cần cm sai

17 tháng 8 2020

Bài 2:

b) \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)

\(=n^2+3n-4-n^2+3n+4\)

\(=6n\) luôn chia hết cho 6 với mọi số nguyên n

=> đpcm

20 tháng 7 2018

mình ghi lộn 1 tí đề bài số 5 là CMR: xy chia hết cho 12

20 tháng 7 2018

1. a) Cho \(x^2-25=0\) 

\(\Rightarrow\left(x-5\right)\left(x+5\right)=0\) 

\(\Rightarrow\) x = 5 hoặc x = -5 

Vậy \(x=\pm5\)là nghiệm của đa thức đã cho.

b) Cho \(x^2+8x-9=0\)

\(\Rightarrow x^2-x+9x-9=0\)

\(\Rightarrow x\left(x-1\right)+9\left(x-1\right)=0\)

\(\Rightarrow\left(x+9\right)\left(x-1\right)=0\)

\(\Rightarrow x=-9\) hoặc \(x=1\)

Vậy \(x=-9\) và \(x=1\) là nhiệm của đa thức đã cho.