Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR:
a) n5 - n chia hết cho 30 với n thuộc N
b) n4-10n2 + 9 chia hết cho 384 với mọi n lẻ, n thuộc Z
a) Áp dụng định lí nhỏ Fermat vào biểu thức \(n^5-n\), ta được:
\(n^5-n⋮5\)(vì 5 là số nguyên tố)
Ta có: \(n^5-n\)
\(=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)\)
Vì n-1 và n là hai số nguyên liên tiếp nên \(\left(n-1\right)\cdot n⋮2\)
\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)
Vì n-1; n và n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3\)
mà \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)(cmt)
và ƯCLN(2;3)=1
nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\cdot3\)
\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)
\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)⋮6\)
hay \(n^5-n⋮6\)
mà \(n^5-n⋮5\)(cmt)
và ƯCLN(6;5)=1
nên \(n^5-n⋮6\cdot5\)
hay \(n^5-n⋮30\)(đpcm)
\(p^2+2p+5=p^2+4p-2p-8+13=\left(p^2+4p\right)-\left(2p+8\right)+13\)
\(=p\left(p+4\right)-2\left(p+4\right)+13=\left(p-2\right)\left(p+4\right)+13\)
Vì \(\left(p-2\right)\left(p+4\right)⋮p+4\)\(\Rightarrow\)Để \(p^2+2p+5⋮p+4\)thì \(13⋮p+4\)
\(\Rightarrow p+4\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)\(\Rightarrow p\in\left\{-17;-5;-3;9\right\}\)
Vậy \(p\in\left\{-17;-5;-3;9\right\}\)
Câu 1 : Giải
* Nếu n chia 5 dư 1 thì n2 chia 5 dư 1
\(\Rightarrow\left(n^2+4\right)⋮5\)
* Nếu n chia 5 dư 4 thì n2 chia 5 dư 4
\(\Rightarrow\left(n^2+1\right)⋮5\)
\(\Rightarrow\left(n^2+1\right)\left(n^2+4\right)⋮5\)
Từ đó suy ra \(n\left(n^2+1\right)\left(n^2+4\right)⋮5\)( đpcm )
Câu 2 : Giải
Ta có : \(n^2+4n^2+5=5n^2+5=5\left(n^2+1\right)\)
\(\Rightarrow n^2+4n^2+5=\overline{...5}\)
\(\Rightarrow\)\(\Rightarrow n^2+4n^2+5\) không chia hết cho 8 ( đpcm )
Bài 2:
a) \(\left(n^2+3n-1\right)\left(n+2\right)-n^3-2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3-2\)
\(=5n^2+5n-4\)
Mà 5n2 + 5n chia hết cho 5 mà 4 không chia hết cho 5
=> \(5n^2+5n-4\) không chia hết cho 5
=> điều cần cm sai
Bài 2:
b) \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)
\(=n^2+3n-4-n^2+3n+4\)
\(=6n\) luôn chia hết cho 6 với mọi số nguyên n
=> đpcm
mình ghi lộn 1 tí đề bài số 5 là CMR: xy chia hết cho 12
1. a) Cho \(x^2-25=0\)
\(\Rightarrow\left(x-5\right)\left(x+5\right)=0\)
\(\Rightarrow\) x = 5 hoặc x = -5
Vậy \(x=\pm5\)là nghiệm của đa thức đã cho.
b) Cho \(x^2+8x-9=0\)
\(\Rightarrow x^2-x+9x-9=0\)
\(\Rightarrow x\left(x-1\right)+9\left(x-1\right)=0\)
\(\Rightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Rightarrow x=-9\) hoặc \(x=1\)
Vậy \(x=-9\) và \(x=1\) là nhiệm của đa thức đã cho.