K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2015

Cậu giải cách làm hộ mình được ko ?

7 tháng 2 2016

bai toan nay kho 

7 tháng 2 2016

a.Đặt n2+2006=a2(a\(\in\)Z)

=>2006=a2-n2=(a-n)(a+n) (1)

Mà (a+n)-(a-n)=2n chia hết cho 2

=>a+n và a-n có cùng tính chẵn lẻ 

+ TH1:a+n và a-n cùng lẻ => (a-n)(a+n) lẻ, trái với (1)

+ TH2 :a+n và a-n cùng chẵn => (a-n)(a+n) chia hết cho 4, trái với (1)

Vậy không có n thỏa mãn n2+2006 là số chính phương

b.Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n=3k+1 hoặc n=3k+2 (k\(\in\)N*)

+ n=3k+1 thì n2+2006=(3k+1)2+2006=9k2+6k+2007 chia hết cho 3 và lớn hơn 3

=>n2+2006 là hợp số

+ n=3k+2 thì n2+2006=(3k+2)2+2006=9k2+12k+2010 chia hết cho 3 và lớn hơn 3

=>n2+2006 là hợp số

Vậy n2+2006 là hợp số

27 tháng 10 2024

Bài 1: Gọi ước chung lớn nhất của n + 1 và 7n + 4 là d

Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}7n+7⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ 7n+ 7 - 7n - 4 ⋮ d

⇒ (7n - 7n) + (7 - 4) ⋮ d ⇒0 + 3 ⋮ d ⇒ 3 ⋮ d ⇒ d \(\in\) Ư(3) = {1; 3}

Nếu n = 3 thì n + 1 ⋮ 3 ⇒ n = 3k - 1 khi đó hai số sẽ không nguyên tố cùng nhau.

Vậy để hai số nguyên tố cùng nhau thì n \(\ne\) 3k - 1

Kết luận: n \(\ne\) 3k - 1 

 

 

 

1 tháng 7 2015

http://hocmai.vn/file.php/389/Bai_tap_tu_luyen/De_thi_HSG/Dap_an_De_thi_HSG_lop_6_so_1.pdf Mình tặng bạn nhé!! ^^

1 tháng 7 2015

http://hocmai.vn/file.php/389/Bai_tap_tu_luyen/De_thi_HSG/Dap_an_De_thi_HSG_lop_6_so_1.pdf

đặt n^2+2006=a^2

=>2006=a^2-n^2

=>2006=(a-n)(a+n)

vì tích của a-n và a+n là 1 số chẵn nên trong 2 số sẽ có ít nhất 1 số chẵn (1)

mặt khác: a-n+(a+n)=2a là 1 số chẵn=> a-n và a+n phải cùng tính chẵn lẻ(2)

từ (1) và(2) suy ra a-n và a+n là 2 số chẵn

đặt a-n=2x;a+n=2y(x,y thuộc Z)

=>(a-n)(a+n)=2x.2y

=>2x.2y=2006

=>4xy=2006

vì x,y là số nguyên nên 2006 phải chia hết cho 4(vô lí, vì 2006 ko chia hết cho 4)

vậy ko tồn tại số nguyên n để n^2+2006 là 1 số chính phương

2/ vì n là số nguyên tố lơn hơn 3 nên n ko chia hết cho 3=>n có dạng 3k+1;3k+2

+) nếu n=3k+1

=>n^2+2006=(3k+1)^2+2006=9k^2+6k+2007 chia hết cho 3 và n^2+2006 lớn hơn 3=>n^2+2006 là hợp số

+)nếu n=3k+2

=>n^2+2006=(3k+2)^2+2006=9k^2+12k+2010 chia hết cho 3 và n^2+2006 lớn hơn 3=>n^2+2006 là hợp số

vậy n^2+2006 là hợp số với n>3

tick nha

28 tháng 1 2016

ko

31 tháng 1 2016

a) vì n là số nt > 3 nên n là số lẻ

=> n2 là số lẻ => n2 là hợp số (1)

mà 2006 > 2 => 2006 là hơp số (2)

=> n2+ 2006 là hợp số

KL: n+2006 là hợp số

1 tháng 2 2016

n là số nguyên tố lớn hơn 3 => n=3k+1 hoặc n=3k+2  (k la so tu nhien)

Nếu n=3k+1 => n^2+2006=(3k+1)^2+2006=9k^2+6k+1+2006=9k^2+6k+2007 =3(3k^2+2k+669) chia hết cho 3 và >3 nên là hop so

Nếu n=3k+2 =>n^2+2006=(3k+2)^2+2006=9k^2+12k+2010  chia hết cho 3 và > 3 nen là hop so

 

 

bài 2

 

n^2+2006=a^2  => 2006=a^2-n^2=(a-n)(a+n)

ta co n-a-(n+a)=-2a là số chẵn nên a-n và a+n cùng tính chẵn lẻ

ta thấy 2006 là số chẵn nên a-n và a+n cùng chẵn nên (a+n)(a+n) chia hết cho 4 mà 2006 ko chia hé t cho 4 nên ko có x

31 tháng 3 2016

a)Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.

31 tháng 3 2016

b)

Đặt n2 + 2006 = a2 (a $∈$∈Z)

=> 2006 = a2 - n2 = (a - n)(a + n) (1)

Mà (a + n) - (a - n) = 2n chia hết cho 2

=>a + n và a - n có cùng tính chẵn lẻ

+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)

+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)

Vậy không có n thỏa mãn n2+2006 là số chính phương

b)Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n = 3k + 1 hoặc n = 3k + 2 (k$∈$∈N*)

+) n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số 

+) n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 12k + 2010 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số

Vậy n2 + 2006 là hợp số

a)

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)