Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 bạn dùng chia hết cho 13
Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8
Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1
Khi đó ta có x^2+3x-4=(x-1)(x+4)
đến đây thì dễ rồi
Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra
Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2
Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra
-Xét N=2 thì N+2=2+2=4 chia hết cho 2 nên là hợp số(loại)
-Xét N=3 thì N+6=3+6=9 chia hết cho 3 nên là hợp số(loại)
-Xét N=5 thì N+2=5+2=7 là số nguyên tố
N+6=5+6=11 là số nguyên tố
N+8=5+8=13 là số nguyên tố
N+24=5+24=29 là số nguyên tố
\(\Rightarrow\)N+5 thỏa mãn điều kiên đề bài
Các số nguyên tố N lớn hơn 5 có dạng: 5k+1;5k+2;5k+3 và 5k+4
Trường hợp 1:N=5k+1\(\Rightarrow\)N+24=5k+1+25 chia hết cho 5 nên là hợp số\(\Rightarrow\)N=5k+1 loại
Trường hợp 2:N=5k+2\(\Rightarrow\)N+8=5k+28=5k+10 chia hết cho 5 nên là hợp số\(\Rightarrow\)N=5k+2 loại
Trường hợp 3:N=5k+3\(\Rightarrow\)N+2=5k+3+2=5k+5 chia hết cho 5 nên là hợp số\(\Rightarrow\)N=5k+3 loại
Trường hợp 4:N=5k+4\(\Rightarrow\)N+6=5k+4+6=5k+10 chia hết cho 5 nên là hợp số\(\Rightarrow\)N=5k+4 loại
Vậy N=5 thỏa mãn yêu cầu của đề bài.
n\(^3\) -n\(^2\) -7n +10
=n\(^3\) -2n\(^2\) +n\(^2\) -2n-5n+10
=(n-2)(n\(^2\) +n-5) (bạn nhóm lại rồi rút nhân tử chung nha)
Vì P nguyên tố nên
=> n-2=1 =>n=3 (nhận)
=>n\(^2\) +n-5=1 => n=2 (nhận) hoặc n=-3(loại)
ta có: n=3 =>P=7(nhận) (bạn thế n vào biểu thức P rồi tính ra)
n=2 => P=0(loại)
vậy n cần tìm là n=3
Ta có A = n2012 - n2 + n2002 - n + n2 + n + 1
= n2[(n3)670 - 1] + n[(n3)667 - 1] + (n2 + n + 1)
= (n3 - 1)X + (n3 - 1)Y + (n2 + n + 1)
= (n2 + n + 1)(X' + Y' + 1)
Với n = 1 thì A = 3
Với n > 1 thì A không phải là số nguyên tố do là tích của 2 số nhân với nhau
\(A=n^3-7n^2+4n-28=\left(n-7\right)\left(n^2+n+4\right)\)
Ta có \(n^2+n+4=\left(n+\frac{1}{2}\right)^2+\frac{15}{4}>0\). Vậy để A là số nguyên tố hoặc hợp số thì điều kiện là \(x>7\)
Xét : \(\left(n-7\right)\left(n^2+n+4\right)=\left(n-7\right)\left[n\left(n+1\right)+4\right]\)
\(=\left(n-7\right).n.\left(n+1\right)+4\left(n-7\right)\)
Ta có \(n\left(n+1\right)\) là tích của hai số tự nhiên liên tiếp nên chia hết cho 2 , \(4\left(n-7\right)\) cũng chia hết cho 2
=> A chia hết cho 2 => A là hợp số. (*)
Kết luận : A là hợp số với mọi số tự nhiên \(n>7\) và A không tồn tại giá trị là số nguyên tố.
Chú ý : (*) Trường hợp A = 2 (số nguyên tố chẵn duy nhất chia hết cho 2) ta không tìm được giá trị tự nhiên của n nên loại
CVT làm dài dòng quá lớp 6 không đến nối vậy chứ có khi sai cũng lên để xem
mà đề bảo tìm n chứ có bắt chứng minh đâu
A=n^3-7n^2+4n-28
=n^2(n-7)+4(n-7)
n^2(n-7)+4(n-7) =(n-7)(n^2+4)
Vậy A luôn chia hết cho n-7 & (n^2+4)
*. tìm n để A là nguyên tố
đk cần (n-7) =1=> n=8 (duy nhất có thể nhưng chưa đủ)
với n=8 có A=64+4=68 ko phải nguyên tố
vậy không có n cho A là nguyên tố
* tìm n đê A là hợp số
A>0 vậy n>7
với mọi n>7 A là hợp số