\(n\text{∈}Z\) để \(A=\dfrac{3n+2}{n-1}\text{∈}Z\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2017

Ta có:

\(A=\dfrac{3n+2}{n-1}=\dfrac{\left(3n-3\right)+5}{n-1}=\dfrac{3n-3}{n-1}+\dfrac{5}{n-1}=\dfrac{3\left(n-1\right)}{n-1}+\dfrac{5}{n-1}=3+\dfrac{5}{n-1}\)

Để \(A\in Z\Rightarrow\dfrac{5}{n-1}\in Z\Rightarrow5⋮n-1\) hay \(n-1\in U\left(5\right)=\left\{\pm1;\pm2\right\}\)

Lập bảng giá trị:

\(n-1\) \(1\) \(-1\) \(5\) \(-5\)
\(n\) \(2\) \(0\) \(6\) \(-4\)

Vậy với \(n\in\left\{-4;0;2;6\right\}\) thì \(\dfrac{3n+2}{n-1}\in Z\)

25 tháng 3 2017

Để \(A\in Z\) thì \(3n+2⋮n-1\)

\(\Rightarrow3\left(n-1\right)+5\) \(⋮n-1\)

\(3\left(n-1\right)⋮n-1\)

\(\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\inƯ\left(5\right)\)

\(Ư\left(5\right)=\left\{\pm1;\pm5\right\}\)

Ta có bảng sau:

\(n-1\) 1 \(-1\) 5 \(-5\)
\(n\) 2 0 6 \(-4\)
Kết luận nhận nhận nhận nhận

Vậy \(n\in\left\{-4;0;2;6\right\}\).

1.Cho A=\(\dfrac{n+1}{n-2}\)

a)Tìm n Z để A là phân số

Để A là phân số thì n+1;n-2 ∈​ Z ; n-2 khác 0

<=> n ∈​ Z; n >2

Vậy A là phân số <=> n ∈​ Z; n>2

b)Tìm nZ để AZ

A ∈​ Z <=> n+1 chia hết cho n-2

<=>n-2+3 chia hết cho n-2

<=>3 chia hết cho n-2 ( vì n-2 chia hết cho n-2)

<=>n-2 ∈​ Ư(3)={1;-1;3;-3}

<=>n ∈​ {3;1;5;-1}

Vậy để A Z thì n ∈​ {3;1;5;-1}

c)Tìm NZ để A lớn nhất

2.Cho B=\(\dfrac{3n+2}{4n+3}\)

Chứng minh B tối giản

1c) Tìm n∈Z để A lớn nhất:

Ta có A=\(\dfrac{n+1}{n-2}\)=\(\dfrac{n-2+3}{n-2}\)=\(\dfrac{n-2}{n-2}\)+\(\dfrac{3}{n-2}\)=1+\(\dfrac{3}{n-2}\)

=> A lớn nhất <=> \(\dfrac{3}{n-2}\) lớn nhất

<=>n-2 nhỏ nhất; n-2>0; n-2∈Z

<=>n-2=1

<=>n=3

Vậy A lớn nhất <=> n-3

29 tháng 4 2017

BÀi 1

Để A \(\in\) Z

=>\(\left(n+2\right)⋮\left(n-5\right)\)

=>\([\left(n-5\right)+7]⋮\left(n-5\right)\)

=>\(7⋮\left(n-5\right)\)

=>\(n-5\in\left\{1;7;-1;-7\right\}\)

=>\(n\in\left\{6;13;4;-2\right\}\)

Vậy \(n\in\left\{6;13;4;-2\right\}\)

29 tháng 4 2017

Giúp mk nha

Arigatou gozaimasu!

6 tháng 7 2017

a) Ta có :

\(Q=\dfrac{6n-1}{3n+2}=\dfrac{2\left(3n+2\right)-5}{3n+2}=2-\dfrac{5}{3n+2}\)

Để Q có giá trị nguyên thì :

\(5⋮3n+2\)

\(\Leftrightarrow3n+2\inƯ\left(5\right)\)

Ta có bảng :

\(3n+2\) \(1\) \(-1\) \(5\) \(-5\)
\(n\) \(\dfrac{-1}{3}\) \(-1\) \(1\) \(\dfrac{-7}{3}\)
\(Đk\) \(n\in Z\) loại tm tm loại

Vậy \(n\in\left\{-1;1\right\}\) là giá trị cần tìm

25 tháng 4 2018

Bài 1

2.|x+1|-3=5

2.|x+1|   =8

|x+1|     =4

=>x+1=4 hoặc x+1=-4

<=>x= 3 hoặc -5

Bài 3

     A=2/n-1

Để A có giá trị nguyên thì n là

2 phải chia hết cho n-1

U(2)={1,2,-1,-2}

Vậy A là số nguyên khi n=2;3;0;-1

k mk nha. Chúc bạn học giỏi

Thank you

25 tháng 4 2018

bài 1 :

\(2\cdot|x+1|-3=5\)

\(2\cdot|x+1|=5+3\)

\(2\cdot|x+1|=8\)

\(|x+1|=8\div2\)

\(|x+1|=4\)

\(x=4-3\)

\(x=3\Rightarrow|x|=3\)

bài 2 : có 2 trường hợp để \(n\in Z\)là \(A=2\)và \(A=4\)

TH1:

 \(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6}{3}\left(n\in Z\right)\)

\(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6-1}{3+2}=5\)

\(\Rightarrow n=5\)

TH2

\(4=\frac{n+1}{n-2}\Rightarrow4=\frac{4}{1}\left(n\in Z\right)\)

\(\Rightarrow4=\frac{4-1}{1+2}=3\)

\(\Rightarrow n=3\)

\(n\in\left\{5;3\right\}\left(n\in Z\right)\)

Bài 3  có 2 trường hợp là \(A=1\)và \(A=2\)

TH1:

\(1=\frac{2}{n-1}\Rightarrow1=\frac{2}{2}\)

\(1=\frac{2}{2+1}=3\)

\(\Rightarrow n=3\)

TH2 : 

\(2=\frac{2}{n-1}\Rightarrow2=\frac{2}{1}\)

\(2=\frac{2}{1+1}=2\)

\(\Rightarrow n=2\)

vậy \(\Rightarrow n\in\left\{3;2\right\}\)

23 tháng 3 2018

a, \(B=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\in Z\)

 <=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)

b, \(C=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\in Z\)

<=> \(n-2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Giải ra ta được : \(n=\left\{3;1;7;-3\right\}\)

c, \(D=\frac{-3\left(n+1\right)+5}{n+1}=-3+\frac{5}{n+1}\in Z\)

<=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)

20 tháng 12 2021

cục cức chấm mắm

3 tháng 4 2017

a, Gỉa sử phân số\(\dfrac{2n+5}{3n+7}\) chưa tối giản

Khi đó gọi d là một ước nguyên tố của 2n+5 và 3n+7

Ta có: 2n+5\(⋮\) d; 3n+7\(⋮\) d

\(\Rightarrow\)3(2n+5)-2(3n+7) \(⋮\) d

\(\Rightarrow\)6n+15- 6n- 14\(⋮\)d

\(\Rightarrow\)1\(⋮\) d

Mà d là số nguyên tố\(\Rightarrow\)d \(\in\)\(\varnothing\)

Vậy phân số \(\dfrac{2n+5}{3n+7}\) tối giản với mọi n\(\in\)Z

b, Để Q\(\in\)Z\(\Rightarrow\) 2n+5\(⋮\) 3n+7

\(\Rightarrow\)6n+15\(⋮\) 3n+7

\(\Rightarrow\)6n+ 14 + 1\(⋮\)3n+7

\(\Rightarrow\)2.(3n+7)+1\(⋮\)3n+7

\(\Rightarrow\)1:3n+7\(\Rightarrow\)3n+7\(\in\)Ư(1)={\(\pm\)}

+, Với 3n+7=-1

\(\Rightarrow\)3n=(-1)-7

\(\Rightarrow\)2n=-8

\(\Rightarrow\)n=-8.3\(\notin\)Z

\(\Rightarrow\)Để Q \(\in\) Z thì n=-2

Chúc bạn học tốtbanhqua

2 tháng 4 2017

Để Q là số nguyên thì

\(2n+5⋮3n+7\)

\(\Rightarrow3\left(2n+5\right)=6n+15=2\left(3n+7\right)+1⋮3n+7\)

\(2\left(3n+7\right)⋮3n+7\)

\(\Rightarrow1⋮3n+7\)

3n+7=1=>n=-2

3n+7=-1=>n=/

Vậy số nguyên để Q là số nguyên là -2

4 tháng 3 2018

mình cần gấp nhé

4 tháng 3 2018

\(a)\) Ta có : 

\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)

Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)

Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Do đó : 

\(3n+1\)\(1\)\(-1\)\(2\)\(-2\)\(4\)\(-4\)
\(n\)\(0\)\(\frac{-2}{3}\)\(\frac{1}{3}\)\(-1\)\(1\)\(\frac{-5}{3}\)

Lại có  \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)

Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời