K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2016

Ta có : n2 + 2n + 10 = n(n + 2) + 10 = n(n + 1) - n +10 chia hết cho n + 1

=> n + 10 chia hết cho n + 1 => 9 chia hết cho n + 1 => n +1 thuộc Ư(9) = (1;3;9) 

.. Với n + 1 = 1 => n = 0

. Với n + 1 = 3 => n = 2

. Với n + 1 = 9 => n = 8.

Vậy n = 0;2;8

6 tháng 12 2016

\(A=n^2+2n+10=n\left(n+1\right)+\left(n+1\right)+9=\left(n+1\right)\left(n+1\right)+9\\ \\ \)

A chia cho\(\left(n+1\right)+\frac{9}{n+1}\)

(n+1) thuoc uoc (9)=> n+1={+-1,+-3,+-9}

n={-10,-4,-2,0,2,8}

27 tháng 10 2017

Chứng minh rằng:

\(2^{10}+2^{11}+2^{12}\)

\(=2^{10}\left(1+2+2^2\right)\)

\(=2^{10}.7\) \(⋮\) 7

Vậy \(2^{10}+2^{11}+2^{12}\) chia hết cho 7

27 tháng 10 2017

Chứng minh rằng:

\(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\)

\(=3^n.3^3+3^n.3^2+2^n.2^3+2^n.2^2\)

\(=3^n\left(3^3+3^2\right)+2^n\left(2^3+2^2\right)\)

\(=36.3^n+12.3^n\)

\(=6\left(6.3^n+2.3^n\right)\) \(⋮\) 6 với mọi n \(\in\) N

Vậy \(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\) chia hết cho 6 với mọi n \(\in\) N

4 tháng 2 2016

a,4n-5 chia hết cho n-7

=>4n-28+33 chia hết cho n-7

=>4(n-7)+33 chia hết cho n-7

=>33 chia hết cho n-7<=>n-7 \(\in\)Ư(33)

=>n-7 \(\in\) {-33;-11;-3;-1;1;3;11;33}

=>n-7 \(\in\) {-26;-4;4;6;8;10;18;40}

những câu sau làm tương tự

**** mik nha

4 tháng 2 2016

bai toan nay kho qua

11 tháng 8 2017

a) Ta có :

\(n+5⋮n+2\)

\(n+2⋮n+2\)

\(\Leftrightarrow3⋮n+2\)

\(n\in N\Leftrightarrow n+2\in N;n+2\inƯ\left(3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+2=1\Leftrightarrow n=-1\left(loại\right)\\n+1=3\Leftrightarrow n=2\left(tm\right)\end{matrix}\right.\)

Vậy ....

11 tháng 8 2017

b) Ta có :

\(4n+9⋮n+1\)

\(n+1⋮n+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}4n+9⋮n+1\\4n+4⋮n+1\end{matrix}\right.\)

\(\Leftrightarrow5⋮n+1\)

\(n\in N\Leftrightarrow n+1\in N;n+1\inƯ\left(5\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+1=1\Leftrightarrow n=0\\n+1=5\Leftrightarrow n=4\end{matrix}\right.\)

Vậy ....

10 tháng 12 2015

Ta có

\(\frac{6n^2-n+5}{2n+1}=\frac{6n^2+3n-4n-2+7}{2n+1}=\frac{3n\left(2n+1\right)-2\left(2n+1\right)+7}{2n+1}=\frac{\left(3n-2\right)\left(2n+1\right)+7}{2n+1}=3n-2+\frac{7}{2n+1}\)

Để 6n^2-n+5 chia hết cho 2n+1 thì 7 phải chia hết cho 2n+1

hay 2n+1 thuộc Ư(7)

2n+117-1-7
n03-1-4

Vậy n=(0;3;-1;-4)

14 tháng 12 2023

a) Có:n+3 chia hết n-2
Mà:n-2 chia hết n-2
Xét: (n+3)-(n-2) chia hết n-2
n+3-n+2 chia hết cho n-2
(n-n)+3-2 chia hết cho n-2
            1 chia hết cho n-2
nên: n-2 E Ư(1)={1:-1}
Xét:
n-2=1                              n-2=-1
n   =1+2                          n   =-1+2
n   =3 E Z(chọn)              n   =1 E Z(chọn)
Vậy:n={1;3}

14 tháng 12 2023

a) Có:n+3 chia hết n-2
Mà:n-2 chia hết n-2
Xét: (n+3)-(n-2) chia hết n-2
n+3-n+2 chia hết cho n-2
(n-n)+3+2 chia hết cho n-2
            5 chia hết cho n-2
nên: n-2 E Ư(5)={1:-1;5;-5}
Xét:
n-2=1                     n-2=-1                   n-2=5                     n-2=-5
n   =1+2                 n   =-1+2               n    =5+2                n   =-5+2
n   =3                     n   =1                    n     =7                    n=-3
Vậy:n={1;3;-3;7}

26 tháng 9 2017

sai đề à

28 tháng 9 2017

sai thì sorry nha

31 tháng 3 2018

câu 1 mk hổng biết

câu 2 giải như sau

ta có : 12=3.4

A=3+32+33+34+....+32016=(3+32)+(33+34)+.....+(32015+32016)

                                         =(3.1+3.3)+(33.1+33.3)+(32015.1+32015.3)

                                         =3.(1+3)+33.(1+3)+....+32015.(1+3)

                                         =3.4+33.4+....+32015.4

                                         =4.(3+33+.....+32015)

Vì 4 chia hết cho 4=>4.(3+33+...+32015)            (1)

Vì tất cả các số hạng trong A đều là lũy thừa của 3 =>A chia hết cho 3            (2)

Từ (1) và (2) => A chia hết cho 3.4 =>A chia hết cho 12         (đpcm)