Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để\(\frac{19}{n-1}\)là số nguyên suy ra 19 chia hết cho n-1 suy ra n-1 thuộc ước của 19
suy ra n-1=\(\left\{1;19\right\}\)suy ra n=\(\left\{2;20\right\}\)
vậy n=\(\left\{2;20\right\}\)
Vì B là tập các số nguyên có tận cùng là 0;2;4;6;8
nên B là tập các số chẵn
=>A=B
Vì 2k-2=2(k-1) chia hết cho 2
nên C là tập các số chẵn
=>A=C
a) ta có : \(C=\dfrac{x-3}{x+6}=\dfrac{x+6-9}{x+6}=1-\dfrac{9}{x+6}\) là phân số
\(\Leftrightarrow\dfrac{9}{x+6}\) là số phân số \(\Leftrightarrow x+6\ne\) ước của 9 là \(\pm1;\pm3;\pm9\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+6\ne1\\x+6\ne-1\end{matrix}\right.\\\left\{{}\begin{matrix}x+6\ne3\\x+6\ne-3\end{matrix}\right.\\\left\{{}\begin{matrix}x+6\ne9\\x+6\ne-9\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ne-5\\x\ne-7\end{matrix}\right.\\\left\{{}\begin{matrix}x\ne-3\\x\ne-9\end{matrix}\right.\\\left\{{}\begin{matrix}x\ne3\\x\ne-15\end{matrix}\right.\end{matrix}\right.\) vậy .........................................
b) ta có : \(C=\dfrac{x-3}{x+6}=\dfrac{x+6-9}{x+6}=1-\dfrac{9}{x+6}\) nguyên
\(\Leftrightarrow\dfrac{9}{x+6}\) nguyên \(\Leftrightarrow x+6\) thuộc ước của 9 là \(\pm1;\pm2;\pm3\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+6=1\\x+6=-1\end{matrix}\right.\\\left[{}\begin{matrix}x+6=3\\x+6=-3\end{matrix}\right.\\\left[{}\begin{matrix}x+6=9\\x+6=-9\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=-5\\x=-7\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\\x=-9\end{matrix}\right.\\\left[{}\begin{matrix}x=3\\x=-15\end{matrix}\right.\end{matrix}\right.\) vậy ..............................................
Ta có \(\left(2n\right)^2=4n^2>4n^2-1=\left(2n-1\right)\left(2n+1\right)\)
\(\Rightarrow\frac{1}{\left(2n\right)^2}< \frac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(P_n^2=\frac{1^23^25^2...\left(2n-1\right)^2}{2^24^26^2...2n^2}< \frac{1^23^25^2...\left(2n-1\right)^2}{1.3.3.5.5.7...\left(2n-1\right)\left(2n+1\right)}\)
\(P^2< \frac{1^23^25^2...\left(2n-1\right)^2}{1.3^2.5^2...\left(2n-1\right)^2\left(2n+1\right)}=\frac{1}{2n+1}\)
\(\Rightarrow P< \frac{1}{\sqrt{2n+1}}\)
a) \(2^n>2n+1\) (1)
Với n=3 thì (1) <=> \(2^3>2.3+1\) (đúng)
Giả sử (1) đúng đến n=k => \(2^k-2k-1>0\)
Ta có: \(2^{k+1}-2\left(k+1\right)-1=2\left(2^k-2k-1\right)+2k-1>0\) (với \(k>3\))
=> \(2^{k+1}>2\left(k+1\right)+1\) (1) đúng đến n=k+1
Theo quy nạp thì (1) đúng
b) \(2^n\ge n^2\) (2)
Với n=4 thì (2) <=> \(2^4\ge4^2\) (đúng)
Giả sử (2) đúng đến n=k => \(2^k-k^2\ge0\)
Ta có: \(2^{k+1}-\left(k+1\right)^2=2\left(2^k-k^2\right)+\left(k-1\right)^2\ge0\)
=> \(2^{k+1}\ge\left(k+1\right)^2\) => (2) đúng đến n=k+1
Theo nguyên lí quy nạp thì (2) đúng
\(2n+5⋮n-1\)
Mà \(n-1⋮n-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}2n+5⋮n-1\\2n-2⋮n-1\end{matrix}\right.\)
\(\Leftrightarrow7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}n-1=1\\n-1=7\\n-1=-1\\n-1=-7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=2\\n=8\\n=0\\n=-6\end{matrix}\right.\)
Vậy ...
Thanks!!