Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Vì A thuộc Z
\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )
b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)
Vì B thuộc Z nên 5 / x - 3 thuộc Z
\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )
c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)
\(=x-2-\frac{2}{x+1}\)
Vi C thuộc Z nên 2 / x + 1 thuộc Z
\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )
1.Cho A=\(\dfrac{n+1}{n-2}\)
a)Tìm n ∈ Z để A là phân số
Để A là phân số thì n+1;n-2 ∈ Z ; n-2 khác 0
<=> n ∈ Z; n >2
Vậy A là phân số <=> n ∈ Z; n>2
b)Tìm n∈Z để A∈Z
A ∈ Z <=> n+1 chia hết cho n-2
<=>n-2+3 chia hết cho n-2
<=>3 chia hết cho n-2 ( vì n-2 chia hết cho n-2)
<=>n-2 ∈ Ư(3)={1;-1;3;-3}
<=>n ∈ {3;1;5;-1}
Vậy để A ∈ Z thì n ∈ {3;1;5;-1}
c)Tìm N∈Z để A lớn nhất
2.Cho B=\(\dfrac{3n+2}{4n+3}\)
Chứng minh B tối giản
1c) Tìm n∈Z để A lớn nhất:
Ta có A=\(\dfrac{n+1}{n-2}\)=\(\dfrac{n-2+3}{n-2}\)=\(\dfrac{n-2}{n-2}\)+\(\dfrac{3}{n-2}\)=1+\(\dfrac{3}{n-2}\)
=> A lớn nhất <=> \(\dfrac{3}{n-2}\) lớn nhất
<=>n-2 nhỏ nhất; n-2>0; n-2∈Z
<=>n-2=1
<=>n=3
Vậy A lớn nhất <=> n-3
\(b,n+4⋮n+2\)
\(\Rightarrow n+2+2⋮n+2\)
\(n+2⋮n+2\)
\(\Rightarrow2⋮n+2\)
\(\Rightarrow n+2\inƯ\left(2\right)=\left\{1;2\right\}\)
\(\Rightarrow n\in\left\{-1;0\right\}\) mà n thuộc N
=> n = 0
d, \(2n+6⋮n+3\)
\(\Rightarrow2\left(n+3\right)⋮n+3\)
\(n+3⋮n+3\Rightarrow2\left(n+3\right)⋮n+3\)
\(\Rightarrow\) n = bao nhiêu cx đc miễn là n thuộc N
Bài 1
2.|x+1|-3=5
2.|x+1| =8
|x+1| =4
=>x+1=4 hoặc x+1=-4
<=>x= 3 hoặc -5
Bài 3
A=2/n-1
Để A có giá trị nguyên thì n là
2 phải chia hết cho n-1
U(2)={1,2,-1,-2}
Vậy A là số nguyên khi n=2;3;0;-1
k mk nha. Chúc bạn học giỏi
Thank you
bài 1 :
\(2\cdot|x+1|-3=5\)
\(2\cdot|x+1|=5+3\)
\(2\cdot|x+1|=8\)
\(|x+1|=8\div2\)
\(|x+1|=4\)
\(x=4-3\)
\(x=3\Rightarrow|x|=3\)
bài 2 : có 2 trường hợp để \(n\in Z\)là \(A=2\)và \(A=4\)
TH1:
\(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6}{3}\left(n\in Z\right)\)
\(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6-1}{3+2}=5\)
\(\Rightarrow n=5\)
TH2
\(4=\frac{n+1}{n-2}\Rightarrow4=\frac{4}{1}\left(n\in Z\right)\)
\(\Rightarrow4=\frac{4-1}{1+2}=3\)
\(\Rightarrow n=3\)
\(n\in\left\{5;3\right\}\left(n\in Z\right)\)
Bài 3 có 2 trường hợp là \(A=1\)và \(A=2\)
TH1:
\(1=\frac{2}{n-1}\Rightarrow1=\frac{2}{2}\)
\(1=\frac{2}{2+1}=3\)
\(\Rightarrow n=3\)
TH2 :
\(2=\frac{2}{n-1}\Rightarrow2=\frac{2}{1}\)
\(2=\frac{2}{1+1}=2\)
\(\Rightarrow n=2\)
vậy \(\Rightarrow n\in\left\{3;2\right\}\)
Bài 2:
a)Gọi UCLN(14n+3;21n+4) là d
Ta có:
[3(14n+3)]-[2(21n+4)] chia hết d
=>[42n+9]-[42n+8] chia hết d
=>1 chia hết d
=>d=1. Suy ra 14n+3 và 21n+4 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
b)Gọi UCLN(12n+1;30n+2) là d
Ta có:
[5(12n+1)]-[2(30n+2)] chia hết d
=>[60n+5]-[60n+4] chia hết d
=>1 chia hết d. Suy ra 12n+1 và 30n+2 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
c)Gọi UCLN(3n-2;4n-3) là d
Ta có:
[4(3n-2)]-[3(4n-3)] chia hết d
=>[12n-8]-[12n-9] chia hết d
=>1 chia hết d. Suy ra 3n-2 và 4n-3 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
d)Gọi UCLN(4n+1;6n+1) là d
Ta có:
[3(4n+1)]-[2(6n+1)] chia hết d
=>[12n+3]-[12n+2] chia hết d
=>1 chia hết d. Suy ra 4n+1 và 6n+1 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
a) n - 2 \(\in\)Ư(6) = {-1;1;2;-2;3;-3;6;-6}
Sau đó b thay số vào n - 2 = .. để tìm n nha :)
b) (n + 2) \(⋮\)(n - 3)
=> (n-3+5) \(⋮\)(n-3)
Mà (n-3) \(⋮\)(n-3)
=> (n-3) \(\in\)Ư(5) = {-1;1;5;-5}
Rồi cũng thay số như câu a
=>n-2 thuộc Ư(6)={1;-1;2;-2;3;-3;6;-6}
rồi lập bản thử từng TH nhé