\(\in\)N, biết :

a,2n+1 \(⋮\)6-n

b,3n

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) => n-1+3 chia hết n-1

Mà n-1 chia hết n-1

=> 3 chia hết cho n-1

=> n-1 thuộc Ước của 3

........

b)=> 2(n+1) +5 chia hết n+1

mà 2(n+1) chia hết n+1

=> 5 chia hết cho n+1

=> n+1 thuộc ước của 5

.......

3 tháng 3 2020

a,Ta có :\(n+2⋮n-1\)

\(=>n-1+3⋮n-1\)

Do \(n-1⋮n-1\)

\(=>3⋮n-1\)

\(=>n-1\inƯ\left(3\right)\)

\(=>n-1\in\left\{-3;-1;1;3\right\}\)

\(=>n\in\left\{-2;0;2;4\right\}\)

b,\(2n+7⋮n+1\)

\(=>2.\left(n+1\right)+5⋮n+1\)

Do \(2.\left(n+1\right)⋮n+1\)

\(=>5⋮n+1\)

\(=>n+1\inƯ\left(5\right)\)

\(=>n+1\in\left\{-5;-1;1;5\right\}\)

\(=>n\in\left\{-6;-2;0;4\right\}\)

29 tháng 4 2017

BÀi 1

Để A \(\in\) Z

=>\(\left(n+2\right)⋮\left(n-5\right)\)

=>\([\left(n-5\right)+7]⋮\left(n-5\right)\)

=>\(7⋮\left(n-5\right)\)

=>\(n-5\in\left\{1;7;-1;-7\right\}\)

=>\(n\in\left\{6;13;4;-2\right\}\)

Vậy \(n\in\left\{6;13;4;-2\right\}\)

29 tháng 4 2017

Giúp mk nha

Arigatou gozaimasu!

21 tháng 8 2017

a, n + 2 \(⋮n-3\)
<=> n - 3 + 5 \(⋮n-3\)
<=> 5 \(⋮n-3\)
=> n - 3 \(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
=> n = 4; 2; 8; -2 (thỏa mãn)
b, 3n + 15 \(⋮n-4\)
Có 3(n - 4) \(⋮n-4\)
=> (3n + 15) - (3n - 12) \(⋮n-4\)
<=> 27 \(⋮n-4\)
=> n - 4 \(\inƯ\left(27\right)=\left\{\pm1;\pm3;\pm9;\pm27\right\}\)
=> n = 5; 3; 7; 1; 13; -5; 31; -23 (thỏa mãn)
@hoang thuy an

21 tháng 8 2017

c, 2n - 3 \(⋮3n+2\)
<=> 3(2n - 3) \(⋮3n+2\)
<=> 6n - 9 \(⋮3n+2\)
Có 2(3n + 2) \(⋮3n+2\)
=> (6n - 9) - (6n + 4) \(⋮3n+2\)
<=> -13 \(⋮3n+2\)
=> 3n + 2 \(\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
=> 3n = -1; -3; 11; -15
=> n = -\(\dfrac{1}{3};-1;\dfrac{11}{3};-5\)
Mà n \(\in Z\Rightarrow n=-1;-5\)
d, 4n + 7 \(⋮3n+1\)
<=> 3(4n + 7) \(⋮3n+1\)
<=> 12n + 21 \(⋮3n+1\)
Có 4(3n + 1) \(⋮3n+1\)
=> (12n + 21) - (12n + 4) \(⋮3n+1\)
<=> 17 \(⋮3n+1\)
=> 3n + 1 \(\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
=> 3n = 0; -2; 16; -18
=> n = 0; -\(\dfrac{2}{3};\dfrac{16}{3};-6\)
Mà n \(\in Z\Rightarrow n=0;-6\)
@hoang thuy an

30 tháng 6 2018

4n - 1 \(⋮n-2\)

4n - 8 + 7 \(⋮n-2\)

=> 7\(⋮n-2\)

=> n-2\(\in\text{Ư}\left(7\right)\)

=> n - 2\(\in\left\{-7;-1;1;7\right\}\)

30 tháng 6 2018

b và c nữa bạn

26 tháng 2 2017

Bài 1:

b) Ta có:

\(16^5=2^{20}\)

\(\Rightarrow B=16^5+2^{15}=2^{20}+2^{15}\)

\(\Rightarrow B=2^{15}.2^5+2^{15}\)

\(\Rightarrow B=2^{15}\left(2^5+1\right)\)

\(\Rightarrow B=2^{15}.33\)

\(\Rightarrow B⋮33\) (Đpcm)

c) \(C=5+5^2+5^3+5^4+...+5^{100}\)

\(\Rightarrow C=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

\(\Rightarrow C=1\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{98}\left(5+5^2\right)\)

\(\Rightarrow\left(1+5^2+...+5^{98}\right)\left(5+5^2\right)\)

\(\Rightarrow C=Q.30\)

\(\Rightarrow C⋮30\) (Đpcm)

26 tháng 2 2017

Bài 1 : a, \(A=1+3+3^2+...+3^{118}+3^{119}\)

\(A=\left(1+3+3^2+3^3\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)

\(A=\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)

\(A=1.30+...+3^{116}.30=\left(1+...+3^{116}\right).30⋮3\)

Vậy \(A⋮3\)

b, \(B=16^5+2^{15}=\left(2.8\right)^5+2^{15}\)

\(=2^5.8^5+2^{15}=2^5.\left(2^3\right)^5+2^{15}\)

\(=2^5.2^{15}+2^{15}.1=2^{15}\left(32+1\right)=2^{15}.33⋮33\)

Vậy \(B⋮33\)

c, Tương tự câu a nhưng nhóm 2 số

Bài 2 : a, \(n+2⋮n-1\) ; Mà : \(n-1⋮n-1\)

\(\Rightarrow\left(n+2\right)-\left(n-1\right)⋮n-1\)

\(\Rightarrow n+2-n+1⋮n-1\Rightarrow3⋮n-1\)

\(\Rightarrow n-1\in\left\{1;3\right\}\Rightarrow n\in\left\{2;4\right\}\)

Vậy \(n\in\left\{2;4\right\}\) thỏa mãn đề bài

b, \(2n+7⋮n+1\)

Mà : \(n+1⋮n+1\Rightarrow2\left(n+1\right)⋮n+1\Rightarrow2n+2⋮n+1\)

\(\Rightarrow\left(2n+7\right)-\left(2n+2\right)⋮n+1\)

\(\Rightarrow2n+7-2n-2⋮n+1\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in\left\{1;5\right\}\Rightarrow n\in\left\{0;4\right\}\)

Vậy \(n\in\left\{0;4\right\}\) thỏa mãn đề bài

c, tương tự phần b

d, Vì : \(4n+3⋮2n+6\)

Mà : \(2n+6⋮2n+6\Rightarrow2\left(2n+6\right)⋮2n+6\Rightarrow4n+12⋮2n+6\)

\(\Rightarrow\left(4n+12\right)-\left(4n+3\right)⋮2n+6\)

\(\Rightarrow4n+12-4n-3⋮2n+6\Rightarrow9⋮2n+6\)

\(\Rightarrow2n+6\in\left\{1;2;9\right\}\Rightarrow2n=3\Rightarrow n\in\varnothing\)

Vậy \(n\in\varnothing\)