Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x \(\ge\)0; x \(\ne\)1
a) P = \(\left(\frac{2}{\sqrt{x}-1}-\frac{5}{x+\sqrt{x}-2}\right):\left(1+\frac{3-x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right)\)
P = \(\left(\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{5}{x+2\sqrt{x}-\sqrt{x}-2}\right):\frac{x+\sqrt{x}-2+3-x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
P = \(\frac{2\sqrt{x}+4-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\cdot\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+1}\)
P = \(\frac{2\sqrt{x}+1}{\sqrt{x}+1}\)
b) P = \(\frac{1}{\sqrt{x}}\) <=> \(\frac{2\sqrt{x}+1}{\sqrt{x}+1}=\frac{1}{\sqrt{x}}\)
=> \(\sqrt{x}\left(2\sqrt{x}+1\right)-\sqrt{x}-1=0\)
<=> \(2x+\sqrt{x}-\sqrt{x}-1=0\)
<=> \(x=\frac{1}{2}\)(tm)
c)Với đk: x \(\ge\)0 và x \(\ne\)1
\(x-2\sqrt{x-1}=0\) (đk: \(x\ge1\))
<=> \(x-1-2\sqrt{x-1}+1=0\)
<=> \(\left(\sqrt{x-1}-1\right)^2=0\)
<=> \(\sqrt{x-1}-1=0\)
<=> \(\sqrt{x-1}=1\)
<=> \(\left(\sqrt{x-1}\right)^2=1\)
<=> \(\left|x-1\right|=1\)
<=> \(\orbr{\begin{cases}x=0\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)
Với x = 2 => P = \(\frac{2\sqrt{2}+1}{\sqrt{2}+1}=\frac{\left(2\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\frac{4-2\sqrt{2}+\sqrt{2}-1}{2-1}=3-\sqrt{2}\)
a) P = \(\frac{2\sqrt{x}-1}{\sqrt{x}+1}\)(sửa lại)
b) \(\frac{2\sqrt{x}-1}{\sqrt{x}+1}=\frac{1}{\sqrt{x}}\) => \(2x-\sqrt{x}-\sqrt{x}-1=0\)
<=> \(2x-2\sqrt{x}-1=0\)<=> \(2\left(x-\sqrt{x}+\frac{1}{4}\right)-\frac{3}{4}=0\)
<=> \(2\left(\sqrt{x}-\frac{1}{2}\right)^2=\frac{3}{4}\) <=> \(\left(\sqrt{x}-\frac{1}{2}\right)^2=\frac{3}{8}\)....(tiếp tự lm)
a/ Để hàm số này là hàm bậc nhất thì
\(\hept{\begin{cases}\left(3n-1\right)\left(2m+3\right)=0\\4m+3\ne0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=\frac{1}{3}\\m=\frac{-3}{2}\end{cases}}\)
Các câu còn lại làm tương tự nhé bạn
Ta có : \(\frac{1}{\sqrt{n}\left(n+1\right)}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Áp dụng vào bài toán, ta có :
\(VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)
Nếu n =3k, ta có n^4 +1 = (3n^3-2)k +2k +1chia hết cho 2n^3-2
Suy ra 2k+1 chia hết cho 3n^3-2, không có nghiệm.
Nếu n=3k+1, ta có n^4 +1 = (3n^3-2)k + n^3 + 2k +1chia hết cho 2n^3-2
Suy ra n=1
Tương tự cho TH n=3k+2...