Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có
\(\left\{{}\begin{matrix}3n+1⋮2n+3\\2n+3⋮2n+3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}6n+2⋮2n+3\\6n+9⋮2n+3\end{matrix}\right.\)
=> 7\(⋮\) 2n + 3
Do n \(\in\) Z nên 2n + 3 \(\in\) Z
=> 2n + 3 \(\in\) Ư(7) ; 2n + 3 \(⋮̸\) 2
Ta có bảng
n | 2n + 3 | So với điều kiện n\(\in\) Z |
-1 | 1 | Thỏa mãn |
2 | 7 | Thỏa mãn |
-2 | -1 | Thỏa mãn |
-5 | -7 | Thỏa mãn |
Vậy n \(\in\) {-1;2;-2;5} là giá trị cần tìm
a.\(2n^2-3n+1=2n\times\left(n-1\right)-\left(n-1\right)=\left(2n-1\right)\times\left(n-1\right)\Rightarrow2n-1⋮n-1\)
\(\Rightarrow2\left(n-1\right)+1⋮n-1\Rightarrow1⋮n-1\Rightarrow n-1\inƯ\left(1\right)=\left\{1\right\}\Rightarrow n=2\)
b.Tách tương tự nha
\(2n^2-3n+1=\left(2n^2-2n\right)-n+1=2n\left(n-1\right)-n+1\)\(\Rightarrow-n+1⋮n-1\Rightarrow-\left(n-1\right)⋮n-1\)
vậy với mọi x thuộc N đều t/m
b) tương tự nha
1. 2n-3 ⋮ n+1
⇒2n+2-5 ⋮ n+1
⇒2(n+1)-5 ⋮ n+1
Do n∈Z
⇒n+1 ∈ Ư(-5)={-1,1,-5,5}
⇒\(\left[{}\begin{matrix}n-1=-1\\n-1=1\\n-1=-5\\n-1=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=0\\n=2\\n=-4\\n=6\end{matrix}\right.\)
Vậy x∈{0,2,-4,6}
2. Ta có:
x-y-z=0 ⇒\(\left\{{}\begin{matrix}x=y+z\\y=x-z\\z=x-y\end{matrix}\right.\)
Thay vào biểu thức ta được:
\(B=\left(1-\frac{x-y}{x}\right)\left(1-\frac{y+z}{y}\right)\left(1+\frac{x-z}{z}\right)\)
⇒\(B=\frac{x-x+y}{x}.\frac{y-y-z}{y}.\frac{z+x-z}{z}\)
⇒\(B=\frac{y.\left(-z\right).x}{x.y.z}=\frac{\left(-1\right)xyz}{xyz}=-1\)
Vậy biểu thức B có giá trị là -1
a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+30n+n+5-6n^2+3n-10n+5\)
\(=24n+10⋮2\)
d: \(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)
a) 2n + 1 + 12 -2n =13
6-n(ư)13 = -1; 1; -13 ; 13
n = 7; 19
b) tương tự, k làm dc mk sẽ làm tiếp
1. A = \(\dfrac{3n-7}{n-1}=\dfrac{3n-3}{n-1}+\dfrac{-7}{n-1}=3+\dfrac{-7}{n-1}\)
Tại giá trị \(A\notin Z,3\in Z\)\(\Rightarrow\dfrac{-7}{n-1}\in Z\)\(\Rightarrow n-1\inƯ\left(-7\right)\) với \(x\ne1\) (mẫu sẽ có giá trị là 0 nếu x = 1)
Tại \(n-1=7\)\(\Leftrightarrow n=7+1=8\)
Tại \(n-1=-7\Leftrightarrow n=-7+1=-6\)
Tại \(n-1=1\Leftrightarrow n=1+1=2\)
Tại \(n-1=-1\Leftrightarrow n=-1+1=0\)
2. B = \(\dfrac{4n+1}{2n-3}=\dfrac{4n+6}{2n-3}+\dfrac{-5}{2n-3}=2+\dfrac{-5}{2n-3}\)
Tại giá trị \(B\in Z,2\in Z\)\(\Rightarrow\dfrac{-5}{2n-3}\in Z\)\(\Rightarrow2n-3\inƯ\left(-5\right)\) với \(x\ne\dfrac{3}{2}\)
Tại \(2n-3=5\Leftrightarrow2n=8\Leftrightarrow n=4\)
Tại \(2n-3=-5\Leftrightarrow2n=-2\Leftrightarrow n=-1\)
Tại \(2n-3=1\Leftrightarrow2n=4\Leftrightarrow n=2\)
Tại \(2n-3=-1\Leftrightarrow2n=2\Leftrightarrow n=1\)
a) \(\left(5x+1\right)^2=\dfrac{36}{49}\)
\(\left(5x+1\right)^2=\left(\pm\dfrac{6}{9}\right)\)\(^2\)
\(5x+1=\pm\dfrac{6}{9}\)
+) \(5x+1=\dfrac{6}{9}\)
\(5x=\dfrac{6}{9}-1=\dfrac{6}{9}-\dfrac{9}{9}\)
\(5x=\dfrac{-5}{9}\)
\(x=\dfrac{-5}{9}:5=\dfrac{-1}{45}\)
+) \(5x+1=\dfrac{-6}{9}\)
\(5x=\dfrac{-6}{9}-1=\dfrac{-6}{9}-\dfrac{9}{9}\)
\(5x=\dfrac{-5}{3}\)
\(x=\dfrac{-5}{3}:5=\dfrac{-5}{15}\)
vậy \(x\in\left\{\dfrac{-5}{15};\dfrac{-1}{45}\right\}\)
\(2n-3⋮n+1\Rightarrow2\left(n+1\right)-5⋮n+1\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\inƯ\left(5\right)\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{0;2;-4;6\right\}\)
Bài giải
2n-3 chia hết cho n+1
=> 2n+2-5 chia hết cho n+1
=> 2(n+1)-5 chia hết cho n+1
Mà 2(n+1) chia hết cho n+1
=> 5 chia hết cho n+1
=> n+1 thuộc Ư(5) ={1;-1;5;-5}
* TH1: n+1=1 => n=0 thuộc Z
* TH2: n+1=1 => n=-2 thuộc Z
*TH3: n+1=5 => n=4 thuộc Z
* TH4: n+1=-5 => n=-6 thuộc Z
=> n thuộc {0;-2;4;6}
Vậy n thuộc {0;-2;4;6}
~ Học tốt ~ K cho mk nha. Thanks.