\(n\in Z\)sao cho   

 2n - 3 \(⋮\)n + 1

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2018

\(2n-3⋮n+1\)

\(\Rightarrow\left(2n+2\right)-2-3⋮n+1\)

\(\Rightarrow2\left(n+1\right)-5⋮n+1\)

      \(2\left(n+1\right)⋮n+1\)

\(\Rightarrow-5⋮n+1\)

\(\Rightarrow\) \(n+1\inƯ\left(-5\right)\)

đến đây dễ r`, bn tự lm tiếp đi!

18 tháng 2 2018

\(2n-3⋮n+1\)

\(\Rightarrow2n+2-5⋮n+1\)

\(2n+2⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\inƯ\left(5\right)\)

\(\Rightarrow n+1\in\left\{1;\left(-1\right);5;\left(-5\right)\right\}\)

\(\Rightarrow n\in\left\{0;\left(-2\right);\left(-6\right);4\right\}\)

vậy :n  =  0

       n  =  -2

       n  = -6

       n = 4

4 tháng 8 2017

<=>4n-5=4n-2+7

<=>2.(2n-1)+7

vì 2.(2n-1) chia hết cho 2n-1

Nên 2n-1 thuộc Ư(7)={1;7;-1;-7}

do đó 2n-1=1=>n=1

2n-1=7=>n=8

2n-1=-1=>n=0

2n-1=-7=>n=-3

Vậy n ={1;8;0;-3}

4 tháng 8 2017

\(\frac{4n-5}{2n-1}=\frac{4n-2}{2n-1}-\frac{3}{2n-1}\)\(=\frac{2\left(2n-1\right)}{2n-1}-\frac{3}{2n-1}\)\(=2-\frac{3}{2n-1}\)

=> \(\frac{3}{2n-1}\in Z=>\)\(3⋮\left(2n-1\right)=>2n-1\inƯ\left(3\right)\)

=> \(2n-1\in\left\{-3;-1;1;3\right\}\)

=>\(2n\in\left\{-2;0;2;4\right\}\)

=> n thuộc { -1;0;1;2}

29 tháng 4 2017

BÀi 1

Để A \(\in\) Z

=>\(\left(n+2\right)⋮\left(n-5\right)\)

=>\([\left(n-5\right)+7]⋮\left(n-5\right)\)

=>\(7⋮\left(n-5\right)\)

=>\(n-5\in\left\{1;7;-1;-7\right\}\)

=>\(n\in\left\{6;13;4;-2\right\}\)

Vậy \(n\in\left\{6;13;4;-2\right\}\)

29 tháng 4 2017

Giúp mk nha

Arigatou gozaimasu!

a) -3 \(⋮\)3n+1

=> 3n+1 \(\in\)Ư(-3)

=> 3n+1 \(\in\){-1;1;3;-3}

Ta co bang:

3n+1-3-113
n-4/3-2/302/3
 loạiloạichọnloại

KL

b) 8\(⋮\)2n+1

=> 2n+1\(\in\) Ư{8}

=>2n+1 \(\in\){-1;1;4;2;8;-2;-4;-8}

vì 2n là số chẵn => 2n+1 là số lẻ

=> 2n+1\(\in\){-1;1}

2n+1-11
n-10
 chọnchọn

c)n+1 \(⋮\)n-2

=> n-2 +3 \(⋮\)n-2

Vì n-2\(⋮\)n-2 mà n-2+3\(⋮\)n-2

=>3\(⋮\)n-2

=>n-2\(\in\)  Ư{3}

=>n-2\(\in\){-1;-3;1;3}

n-2-11-33
n13-15
 chọn chọnchọnchọn

d)3n+2 \(⋮\)n-1

=>3(n-1)+5 \(⋮\)n-1

Vì 3(n-1)\(⋮\)n-1 mà 3(n-1)+5\(⋮\)n-1

=>5\(⋮\)n-1

=>n-1\(\in\)Ư{5}

=>n-1\(\in\){-5;-1;1;5}

n-1-5-115
n-4026
 chọn chọnchọnchọn

e)3-n:2n+1

=> 2(3-n)\(⋮\)2n+1

=>6-2n\(⋮\)2n+1

=>7-(2n+1)\(⋮\)2n+1

Vì -(2n+1)\(⋮\)2n+1 mà 7 -(2n+1) \(⋮\)2n+1

=>2n+1 \(\in\)Ư{7}

=>2n+1\(\in\){-7;-1;1;7}

2n+1-7-117
n-4-10

3

 chọnchọnchọnchọn
15 tháng 2 2017

a) \(\frac{2\left(n+1\right)-1}{n+1}=\frac{2\left(n+1\right)}{n+1}-\frac{1}{n+1}\)

                                \(=2-\frac{1}{n+1}\)

=> \(1⋮n+1\)

Ta có bảng sau:

  
  
  
16 tháng 7 2016

a) \(n^2-3n+9\)chia het cho \(n-2\)

\(\Leftrightarrow\)\(n^2-2n-n-2+11\)chia het cho \(n-2\)

\(\Leftrightarrow\)\(\left(n-2\right)\left(n+1\right)+11\)chia het cho \(n-2\)

\(\Leftrightarrow\)11 chia het cho \(n-2\)

\(\Rightarrow\)\(n-2\in U\left(11\right)\)\(\Rightarrow\)\(n-2\in\left\{-11;-1;1;11\right\}\)

                                                   \(\Rightarrow\)\(n\in\left\{-9;1;3;13\right\}\)

16 tháng 7 2016

b) 2n-1 chia hết cho n-2

\(\Rightarrow2n-2+3\) chia hết cho\(n-2\)

\(\Rightarrow3\)chia hết cho \(n-2\)

\(\Rightarrow n-2\in U\left(3\right)\)\(\Rightarrow n-2\in\left\{-3;-1;1;3\right\}\)\(\Rightarrow n\in\left\{-1;1;3;5\right\}\)

13 tháng 2 2020

\(B=\frac{n+3}{n-4}=\frac{n-4+7}{n-4}=\frac{n-4}{n-4}+\frac{7}{n-4}=1+\frac{7}{n-4}\)

=> n-4\(\in\)Ư(7)={-1,-7,1,7}

=> n\(\in\){3,-3,5,11}

\(C=\frac{2n+1}{2n-3}=\frac{2n-3+4}{2n-3}=\frac{2n-3}{2n-3}+\frac{4}{2n-3}=1+\frac{4}{2n-3}\)

=> 2n-3 \(\in\)Ư(4)={-1,-2,-4,1,2,4}

=> n\(\in\){1,2}

13 tháng 2 2020

Trl 

-Bạn đó làm đúng rồi nhé ~!

Hok tốt 

nhé bạn

27 tháng 10 2016

1 ) 10 \(⋮\) n

=> n \(\in\) Ư ( 10 )

Ư ( 10 ) = { 1 , 2 , 5 , 10 }

Vậy n \(\in\) { 1 ; 2 ; 5 ; 10 }

2 ) 12 : \(⋮\) ( n - 1 )

=> n - 1 \(\in\) Ư ( 12 )

=> Ư ( 12 ) = { 1 ; 12 ; 2 ; 6 ; 3 ; 4 }

n - 11122634
n2133745

 

Vậy n \(\in\) { 2 , 13 , 3 , 7 , 4 , 5 }

3 ) 20 \(⋮\) ( 2n + 1 )

=> 2n + 1 \(\in\) Ư ( 20 )

=> Ư ( 20 ) = { 1 ; 20 ; 2 ; 10 ; 4 ; 5 }

2n+112021045
n019/2 ( loại )1/2 ( loại )9/2 ( loại )3/2 ( loại )2

 

Các trường hợp loại , vì n \(\in\) N

Vậy n thuộc { 0 , 2 }