Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/ Ta có : 4x - 3 \(⋮\) x - 2
<=> 4x - 8 + 5 \(⋮\) x - 2
<=> 4(x - 2) + 5 \(⋮\) x - 2
<=> 5 \(⋮\)x - 2
=> x - 2 thuộc Ư(5) = {-5;-1;1;5}
Ta có bảng :
x - 2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |
a) \(n^2-3n+9\)chia het cho \(n-2\)
\(\Leftrightarrow\)\(n^2-2n-n-2+11\)chia het cho \(n-2\)
\(\Leftrightarrow\)\(\left(n-2\right)\left(n+1\right)+11\)chia het cho \(n-2\)
\(\Leftrightarrow\)11 chia het cho \(n-2\)
\(\Rightarrow\)\(n-2\in U\left(11\right)\)\(\Rightarrow\)\(n-2\in\left\{-11;-1;1;11\right\}\)
\(\Rightarrow\)\(n\in\left\{-9;1;3;13\right\}\)
b) 2n-1 chia hết cho n-2
\(\Rightarrow2n-2+3\) chia hết cho\(n-2\)
\(\Rightarrow3\)chia hết cho \(n-2\)
\(\Rightarrow n-2\in U\left(3\right)\)\(\Rightarrow n-2\in\left\{-3;-1;1;3\right\}\)\(\Rightarrow n\in\left\{-1;1;3;5\right\}\)
\(A=\frac{4n+1}{2n+3}=\frac{4n+6}{2n+3}-\frac{5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}=2-\frac{5}{2n+3}\)
a) A nguyên khi \(\frac{5}{2n+3}\) nguyên <=> 5 chia hết cho 2n+3
<=>\(2n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
<=>\(2n\in\left\{-8;-4;-2;2\right\}\)
<=>\(n\in\left\{-4;-2;-1;1\right\}\)
b) A lớn nhất khi \(2-\frac{5}{2n+3}\)lớn nhất <=>\(\frac{5}{2n+3}\) nhỏ nhất <=> 2n+3 lớn nhất < 0 mà n nguyên
<=> 2n+3=-1 <=> n=-2
\(maxA=2-\frac{5}{2n+3}=2-\frac{5}{2\left(-2\right)+3}=2-\frac{5}{-1}=2-\left(-5\right)=7\) tại n=-2
phần giá trị nhỏ nhất bạn làm nốt
1, Vì n+2016, n+2017,n+2018 là 3 số tự nhiên liên tiếp nên tích chia hết cho 3
2, n2\(⋮\)n+1 (1)
Vì n+1\(⋮\)n+1 => (n+1)(n-1)\(⋮\)n+1
=> n2-1\(⋮\)n+1 (2)
Lấy (1) trừ (2) ta có 1\(⋮\)n+1
=>n+1=1=> n=0
Ta có:
\(x^2-8x+13=\left(4-\sqrt{3}\right)^2-8\left(4-\sqrt{3}\right)+13\)
\(=16-8\sqrt{3}+3-32+8\sqrt{3}+13=0\)
Ta có:
\(A=\frac{x^4-6x^3-2x^2+18x+23}{x^2-8x+15}\)
\(=\frac{\left(x^4-8x^3+13x^2\right)+\left(2x^3-16x^2+26x\right)+\left(x^2-8x+13\right)+10}{\left(x^2-8x+13\right)+2}\)
\(=\frac{10}{2}=5\)
1/ Theo vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=13\\x_1.x_2=1\end{cases}}\)
Ta có:
\(x_1^4+x_1^{-4}=x_1^4+\frac{1}{x_1^4}=x_1^4+x_2^4\)
\(=\left(x_1^2+x_2^2\right)^2-2x_1^2x_2^2=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2x_1^2x_2^2\)
\(=\left(13^2-2\right)^2-2=27887\)