Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1,
\(n^4< n^4+n^3+n^2+n+1\le n^4+4n^3+6n^2+4n+1=\left(n+1\right)^4\)
=>n4+n3+n2+n+1=(n+1)4<=>n=0
nhầm sai rồi nếu n^4+n^3+n^2+n+1 là scp thì mới chặn đc nhưng ở đây lại ko phải
\(P=\frac{2n^2-n+2}{2n+1}=\frac{n\left(2n+1\right)-\left(2n-2\right)}{2n+1}=n-\frac{2n-2}{2n+1}\)
\(=n-\frac{2n+1-3}{2n+1}=n-1+\frac{3}{2n+1}\)
Để P nguyên thì \(\frac{3}{2n+1}\)nguyên
\(\Leftrightarrow3⋮\left(2n+1\right)\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Lập bảng:
\(2n+1\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(0\) | \(-1\) | \(1\) | \(-2\) |
Vậy \(n\in\left\{-2;-1;0;1\right\}\)
#)Giải :
\(P=\frac{2n^2-n+2}{2n+1}=\frac{2n^2+n-2n-1+3}{2n+1}=\frac{n\left(2n+1\right)-\left(2n+1\right)+3}{2n+1}\)
\(=\frac{\left(2n+1\right)\left(n-1\right)+3}{2n+1}=n-1+\frac{3}{2n+1}\)
\(\Rightarrow2n+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow\orbr{\begin{cases}2n+1=-3\\2n+1=1\end{cases}\Rightarrow\orbr{\begin{cases}n=-2\\n=-1\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}2n+1=1\\2n+1=3\end{cases}\Rightarrow\orbr{\begin{cases}n=0\\n=1\end{cases}}}\)
Vậy \(n\in\left\{-2;-1;0;1\right\}\)
x=1, y=2, z=3, x+y+z=6. Cách giải thì mình không biết, nhưng chắc chắn bằng 6 đấy.
Với \(n=0\Rightarrow n^4+n^3+n^2=0=0^2\left(TM\right)\)
\(n^4+n^3+n^2\)
\(=n^2\left(n^2+n+1\right)\)
\(\Rightarrow\)Để \(n^4+n^3+n^2\) là số chính phương thì \(\left(n^2+n+1\right)\) là số chính phương.
Có \(n^2< n^2+n+1< n^2+2n+1=\left(n+1\right)^2\)
\(\Rightarrow n^2+n+1\) không là số chính phương
Vậy ...