\(n\in Z\) để ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2016

Với \(n=0\) thì \(n^4+n^3+n^2=0\left(TM\right)\)

\(n^4+n^3+n^2\)

\(=n^2\left(n^2+n+1\right)\)

Để \(n^4+n^3+n^2\) là số chính phương thì \(\left(n^2+n+1\right)\) là số chính phương .

Có : \(n^2< n^2+n+1< n^2+2n+1=\left(n+1\right)^2\)

\(\Rightarrow n^2+n+1\) không là số chính phương .

7 tháng 11 2016

Bài 3:

Xét họ đường cong \(\left(C_m\right):y=f_m\left(x\right)=mx^4\) và các đường thẳng \(d_m:y=k_mx+n_m\),

với \(x\in\left(0;3\right)\)\(m=1,2,3\)

Điều kiện \(\left(C_m\right)\) tiếp xúc với \(d_m\)

\(\begin{cases}mx^4=k_mx+n_m\\4mx^3=k_m\end{cases}\)\(,m=1,2,3\)

Ta cần chọn x1,x2,x3 thỏa mãn

\(\begin{cases}k_1=4x_1^3;k_1=k_2=k_3=k\\k_2=8x_2^3\\k_3=12x_3^3\\x_1+x_2+x_3=3\end{cases}\)\(\Rightarrow\begin{cases}x^3_1=2x^3_2=3x^3_3\\x_1+x_2+x_3=3\end{cases}\)

\(\Rightarrow\begin{cases}x_1=\frac{3\sqrt[3]{6}}{\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}}\\x_2=\frac{x_1}{\sqrt[3]{2}}\\x_3=\frac{x_1}{\sqrt[3]{3}}\end{cases}\).Suy ra \(k=4x_1^3=\frac{648}{\left(\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}\right)^3}\)

\(n_1+n_2+n_3=-3x_1^4\left(1+\frac{1}{\sqrt[3]{2}}+\frac{1}{\sqrt[3]{3}}\right)=-\frac{1458}{\left(\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}\right)^3}\)

Mặt khác: \(f_m^n\left(x\right)=12mx^2>0,\forall x\in\left(0;3\right)\),suy ra \(f_m\left(x\right)\) là hàm lồi trên khoảng \(\left(0;3\right)\).

Do đó, trên khoảng (0;3) đường cong \(\left(C_m\right)\) không nằm phía dưới tiếp tuyến \(\left(d_m\right)\),tức là \(f_m\left(x\right)\ge g_m\left(x\right),\forall x\in\left(0;3\right)\) (*)

Từ hệ thức (*),ta có:

\(a^4\ge ka+n_1\)

\(2b^4\ge kb+n_2\)

\(3c^4\ge kc+n_3\)

Cộng theo vế ta có:

\(P\ge k\left(a+b+c\right)+n_1+n_2+n_3\)

\(=3k+n_1+n_2+n_3\)

\(=\frac{486}{\left(\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}\right)^3}\)

Vậy GTNN của \(P=\frac{486}{\left(\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}\right)^3}\) khi \(a=x_1;b=x_2;c=x_3\)

 

7 tháng 11 2016

2/ Áp dụng BĐT BCS : \(25=\left(\sqrt{x}.\sqrt{x^3}+\sqrt{y}.\sqrt{y^3}\right)^2\le\left(x+y\right)\left(x^3+y^3\right)\)

\(\le\sqrt{2\left(x^2+y^2\right)}.\left(x^3+y^3\right)\)

\(\Rightarrow x^3+y^3\ge\frac{25}{\sqrt{2.5}}=\frac{5\sqrt{10}}{2}\)

Đẳng thức xảy ra khi \(\begin{cases}\frac{\sqrt{x}}{\sqrt{x^3}}=\frac{\sqrt{y}}{\sqrt{y^3}}\\x=y\\x^2+y^2=5\end{cases}\) \(\Leftrightarrow x=y=\frac{\sqrt{10}}{2}\)

Vậy MinP = \(\frac{5\sqrt{10}}{2}\Leftrightarrow x=y=\frac{\sqrt{10}}{2}\)

 

5 tháng 7 2016

\(A^2=\left(\sqrt{x+3}+\sqrt{5-x}\right)^2=8+2\sqrt{\left(x+3\right)\left(5-x\right)}\)
Áp dụng BĐT cô si ta có
\(2\sqrt{\left(x+3\right)\left(5-x\right)}\le x+3+5-x=8\)
\(\Rightarrow A^2\le8+8=16\Rightarrow A\le4 \left(đpcm\right)\)

5 tháng 7 2016

Mình bổ sung cách mới cho bạn nhé ^^

Áp dụng bất đẳng thức Bunhiacopxki , ta có : 

\(A^2=\left(1.\sqrt{x+3}+1.\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x+3+5-x\right)\)\(\Rightarrow A^2\le16\Rightarrow A\le4\)

 

17 tháng 6 2016

oh má ơi

 

17 tháng 6 2016

Minh Hieu Nguyen:ầy đừng hốt có làm đc ko giúp tui với

19 tháng 8 2016

Ta có : \(\left(a^2+b^2\right)^2\ge ab\left(a+b\right)^2\)

\(\Leftrightarrow a^4+b^4+2a^2b^2\ge a^3b+2a^2b^2+ab^3\)

\(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)

\(\Leftrightarrow a^3.\left(a-b\right)-b^3.\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2.\left(a^2+b^2+ab\right)\ge\forall\)

\(\Leftrightarrowđpcm\)

a: Thay x=0 và y=-3 vào hàm số, ta được:

-2m=-3

hay m=3/2

b: Thay x=0 và \(y=\sqrt{2}\) vào hàm số, ta được:

\(-2m=\sqrt{2}\)

hay \(m=-\dfrac{\sqrt{2}}{2}\)

19 tháng 7 2016

nhìn nó cứ lộn xộn xà bàn

AH
Akai Haruma
Giáo viên
12 tháng 7 2020

Đề lỗi. Bạn lưu ý gõ đề bằng công thức toán để được hỗ trợ tốt hơn.

12 tháng 8 2016

(d):y=(m+1)x-2m

a)  để d cắt Oy taih điểm có tung độ là -3

=> giao điểm sẽ là (0;-3)

thay vào (d) ta được -3=0x-2m<=> m=3/2 

vậy m=3/2

b) y=(m+1)x-2m có tung độ gốc là \(\sqrt{2}\)

=> -2m=\(\sqrt{2}\)=> m=\(-\frac{1}{\sqrt{2}}\)