\(n\in Z\) để giá trị biểu thức \(3n^3+10n^2-5\) ch...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2018

ta có : \(3n^3+10n^2-5⋮3n+1\)

\(\Rightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Rightarrow n\left(3n+1\right)+3n\left(3n+1\right)-\left(3n+1\right)-3⋮3n+1\)

\(\Rightarrow\left(n+3n+1\right)\left(3n+1\right)-4⋮3n+1\)

mà \(\left(4n+1\right)\left(3n+1\right)⋮3n+1\)

\(\Rightarrow3n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow n\in\left\{0;\pm1\right\}\)

1 tháng 10 2017

\(\dfrac{3n^3+10n^2-5}{3n+1}=\dfrac{n^2\left(3n+1\right)+3n\left(3n+1\right)-\left(3n+1\right)-4}{3n+1}\)3n+1 ={+-4;+-2;+-1}

3n={-5;-3;-2;0;1;3)

n={-1;0;1}

16 tháng 12 2016

Đặt tính ra, kết quả của số dư là \(-\frac{11}{3}n-5\)

Để biểu thức \(3n^3+10n^2-5\)chia hết cho biểu thức \(3n-1\)thì:

\(\frac{-11}{3}n-5=0\)

\(=>\frac{-11}{3}n=5\)

\(=>n=\frac{-15}{11}\)

26 tháng 6 2020

a)\(\frac{-2n^3+n^2-5n}{2n+1}\)= \(\frac{-n^2\left(2n+1\right)+n\left(2n+1\right)-6n}{2n+1}\)=\(\frac{\left(2n+1\right)\left(2n-1\right)-6n}{2n+1}\)

=\(\left(n-n^2\right)-\frac{6n}{2n+1}\)=\(\left(n-n^2\right)-\frac{3\left(2n+1\right)-3}{2n+1}\)=\(\left(n-n^2\right)-3-\frac{3}{2n+1}\)

Để (-2n3+n2-5n)⋮(2n+1) thì n∈Z

⇒n∈Z thì (2n+1)∈Ư(3)=\(\left\{-1;-3;1;3\right\}\)

Ta có bảng sau:

2n+1 1 3 -1 -3
n 0 1 -1 -2

Vậy n=(0;1;-1;-2) thì (-2n3+n2-5n) chia hết cho (2n+1).

b)\(\frac{3n^3+10n^2-5}{3n+1}\)=\(\frac{n^2\left(3n+1\right)+3n\left(3n+1\right)-\left(3n+1\right)-4}{3n+1}\)

=\(\frac{\left(3n+1\right)\left(n^2+3n-1\right)-4}{3n+1}\)=\(\left(n^2+3n-1\right)-\frac{4}{3n+1}\)

Để (3n3+10n2-5)⋮(3n+1) thì n∈Z

⇒n∈Z thì (3n+1)∈Ư(4)=\(\left\{1;2;4;-1;-2;-4\right\}\)

Ta có bảng sau:

3n+1 1 2 4 -1 -2 -4
n 0 \(\frac{1}{3}\) 1 \(\frac{-2}{3}\) -1 \(\frac{-5}{3}\)

Vì n∈Z nên ta loại (\(\frac{1}{3}\) ;\(\frac{-2}{3}\); \(\frac{-5}{3}\)) .

Vậy n=(0;1;-1) thì (3n3+10n2-5) chia hết cho (3n+1).

chúc bạn học tốt ^_^

21 tháng 10 2017

3n + 10n -5 3n+1 3 2 n 2 3n + n 3 2 9n -5 2 +3n 9n +3n 2 -3n-5 -1 -3n-1 -4 =>\(\dfrac{3n^3+10n^2-5}{3n+1}=\) \(\left(n^2+3n-1\right)-\dfrac{4}{3n+1}\)

để\(\dfrac{3n^3+10n^2-5}{3n+1}\) nguyên thì -\(\dfrac{4}{3n+1}\) nguyên

=>\(-4⋮\left(3n+1\right)\)

=>(3n+1)\(\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

ta có bảng sau

3n+1 -1 1 -2 2 -4 4
3n -2 0 -3 2 -5 3
n \(\dfrac{-2}{3}\) 0 -1 \(\dfrac{2}{3}\) \(\dfrac{-5}{3}\) 1

mà n \(\in Z\)

=>n\(\in\) {-1;0;1}

vậy ....

a, n3+n2-n+5 chia hết cho n+2

=> n3+2n2-n2-2n+n+2+3 chia hết cho n+2

=> n2(n+2)-n(n+2)+(n+2)+3 chia hết cho n+2 

=> (n+2)(n2-n+1) +3 chia hết cho n+2 

Mà (n+2)(n2-n+1) chia hết cho n+2 

=> 3 chia hết n+2 

Mà n+2 thuộc Z => n+2 thuộc Ư(3)={-3,-1,1,3} 

=> n=-5,-3,-2,1

31 tháng 10 2017

Trết! Viết nhầm ngoặc =))

21 tháng 12 2017

a/ Chia đa thức một biến bình thường. Ta sẽ có thương là n2 - 1, số dư là 7

Để n3 +n2-n+5 chia hết cho n+2

thì 7 chia hết cho n+2

\(\Rightarrow\)n+2\(_{ }\in\)Ư(7)

\(\Rightarrow\)n+2\(\in\)\(\left\{1,-1,7,-7\right\}\)

\(\Rightarrow n\in\left\{-1,-3,5,-9\right\}\)

Câu b tương tự

28 tháng 10 2018

a)

x^4-x^3+6x^2-x +a x^2-x+5 x^2+1 x^2 -x +a a-5

Để \(x^4-x^3+6x^2-x+a⋮x^2-x+5\) thì \(a-5=0\Rightarrow a=5\)

b)

3n^3+10n^2 -5 3n+1 n^2+3n-1 9n^2 -5 -3n-5 -4

Để \(3n^3+10n^2-5⋮3n+1\) thì \(3n+1⋮-4\)

\(\Rightarrow3n+1\inƯ\left(-4\right)\)

\(\Rightarrow3n+1\in\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow3n\in\left\{-5;-3;-2;0;1;3\right\}\)

\(\Rightarrow n\in\left\{-\dfrac{5}{3};-1;-\dfrac{2}{3};0;\dfrac{1}{3};1\right\}\)

28 tháng 10 2018

giải ra cụ thể đc ko ?