Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(n^2-3n+9\)chia het cho \(n-2\)
\(\Leftrightarrow\)\(n^2-2n-n-2+11\)chia het cho \(n-2\)
\(\Leftrightarrow\)\(\left(n-2\right)\left(n+1\right)+11\)chia het cho \(n-2\)
\(\Leftrightarrow\)11 chia het cho \(n-2\)
\(\Rightarrow\)\(n-2\in U\left(11\right)\)\(\Rightarrow\)\(n-2\in\left\{-11;-1;1;11\right\}\)
\(\Rightarrow\)\(n\in\left\{-9;1;3;13\right\}\)
b) 2n-1 chia hết cho n-2
\(\Rightarrow2n-2+3\) chia hết cho\(n-2\)
\(\Rightarrow3\)chia hết cho \(n-2\)
\(\Rightarrow n-2\in U\left(3\right)\)\(\Rightarrow n-2\in\left\{-3;-1;1;3\right\}\)\(\Rightarrow n\in\left\{-1;1;3;5\right\}\)
Ta có
\(\frac{2n+1}{n-5}=\frac{2\left(n-5\right)+11}{n-5}=2+\frac{11}{n-5}\)
Để 2n+1 chia hết cho n-5 thì 11 phải chia hết cho n-5
Hay n-5 thuộc Ư(11)
n-5 | 1 | 5 | -1 | -5 |
n | 6 | 10 | 4 | 0 |
2
Ta có
\(\frac{n^2+3n-13}{n+3}=\frac{n\left(n+3\right)-13}{n+3}=n-\frac{13}{n+3}\)
Để n^2+3n-13 chia hết cho n+3 thì 13 phải chia hết cho n+3
=>n+3 thuộc Ư(13)
Đến đây tự tìm ra n nha Khuất Tuấn Anh
3
Ta có
\(\frac{n^2+3}{n+1}=\frac{\left(n^2-1\right)+4}{n+1}=\frac{\left(n-1\right)\left(n+1\right)+4}{n+1}=n-1+\frac{4}{n+1}\)
Lập luận như trên =>n+1 thuộc Ư(4)
Tick nha Khuất Tuấn Anh
\(\frac{A}{n}=\frac{4n+4}{n}=4+\frac{4}{n}\)
\(\Rightarrow n\in U\left(4\right)\)
Lập bảng tiếp nhé!
\(\frac{B}{n}=\frac{5n+6}{n}=5+\frac{6}{n}\)
Lập bảng
\(2.\)
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}=\frac{3}{29}\cdot\frac{29}{3}-\frac{1}{5}\cdot\frac{29}{3}=1-\left(1+\frac{14}{15}\right)=1-1-\frac{14}{15}=\frac{14}{15}\)
b)\(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}=\frac{5}{9}\cdot\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
Ta có\(15-2n⋮n+1\)
\(\Rightarrow17-2\left(n+1\right)⋮n+1\)
\(\Rightarrow17⋮n+1\)
\(\Rightarrow n+1\inƯ\left(17\right)=\left\{1;17\right\}\)
\(\Rightarrow n=\left\{0;16\right\}\)
Ta có \(6n+9⋮4n-1\)
\(\Rightarrow4\left(6n+9\right)⋮4n-1\)
\(\Rightarrow24n+36⋮4n-1\)
\(\Rightarrow6\left(4n-1\right)+42⋮4n-1\)
\(\Rightarrow42⋮4n-1\)
\(\Rightarrow4n-1\inƯ\left(42\right)=\left\{1;2;3;6;7;14;21;42\right\}\)
mà \(n\in N\Rightarrow n=\left\{1;2\right\}\)
a) Ta xét các trường hợp:
+) Với n = 3k \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=\left(3k-1\right)\left(3k+2\right)+12\)
Ta thấy (3k - 1)(3k + 2) không chia hết cho 3, 12 chia hết cho 3 nên (3k - 1)(3k + 2) + 12 không chia hết cho 3 hay (3k - 1)(3k + 2) + 12 không chia hết cho 9.
+) Với n = 3k + 1 \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=3k\left(3k+3\right)+12=9k\left(k+1\right)+12\)
Ta thấy \(9k\left(k+1\right)⋮9;12⋮̸9\Rightarrow9k\left(k+1\right)+12⋮̸9\)
+) Với n = 3k + 2 \(\left(k\in Z\right)\), ta có: \(\left(n-1\right)\left(n+2\right)+12=\left(3k+1\right)\left(3k+4\right)+12\)
Ta thấy (3k + 1)(3k + 4) không chia hết cho 3, 12 chia hết cho 3 nên (3k + 1)(3k + 4) + 12 không chia hết cho 3 hay (3k + 1)(3k + 4) + 12 không chia hết cho 9.
b) Tương tự bài trên.
a, 2n+1 chia hết cho 21=>21 thuộc Ư(2n+1)
=>2n+1 thuộc {1,3,7,21}
2n+1 | 1 | 3 | 7 | 21 |
n | 0 | 1 | 3 | 10 |
Vậy n thuộc{0,1,3,10}