K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 1 2024

\(\int\dfrac{x+1}{x^2+2x+2}dx=\dfrac{1}{2}\int\dfrac{2x+2}{x^2+2x+2}dx=\dfrac{1}{2}\int\dfrac{d\left(x^2+2x+2\right)}{x^2+2x+2}\)

\(=\dfrac{1}{2}ln\left(x^2+2x+2\right)+C\)

9 tháng 1 2024

Để tìm nguyên hàm của y=x+1/x²+2x+2, ta cần xác định giá trị của hàm tại một điểm nào đó.

Giá trị của hàm tại điểm nhân nguyên tố nhất là một phương án đáng tin cậy.

Trong trường hợp này, ta chọn điểm nhân nguyên tố nhất là 3.

Để tính giá trị của hàm tại điểm 3, ta đặt x=3 vào hàm y=x+1/x²+2x+2:

y=3+1/3²+2(3)+2

Ta tiến hành tính toán:

y=3+1/9+6+2

y=3+1/9+12+2

y=3+11/9+2

y=3+12/9

y=3+4/3

y=3+4

y=7

Như vậy, giá trị của hàm tại điểm 3 là 7. Do đó, nguyên hàm của y=x+1/x²+2x+2 là y=7.

Tóm lại, để tìm nguyên hàm của y=x+1/x²+2x+2, ta đã tìm được rằng giá trị của hàm tại điểm 3 là 7, do đó, nguyên hàm của y=x+1/x²+2x+2 là y=7.

   
AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

\(\int f(x)dx=\int \frac{x^2+2x}{x+1}dx=\int \frac{(x+1)^2-1}{x+1}dx=\int (x+1-\frac{1}{x+1})dx\)

\(=\int (x+1)dx-\int \frac{1}{x+1}dx=\frac{x^2}{2}+x-\ln |x+1|+c\)

21 tháng 1 2019

Đáp án A 

30 tháng 1 2016

c1; sin2x=1-cos2x/2 roi tung phan

30 tháng 1 2016

c2 ;nhan vo duocx2(sinx/2 .cosx/2)=x2/2(sinx+cosx) lai nhan vo roi tung phan nhe

NV
11 tháng 3 2022

2.

\(I=\int e^{3x}.3^xdx\)

Đặt \(\left\{{}\begin{matrix}u=3^x\\dv=e^{3x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=3^xln3dx\\v=\dfrac{1}{3}e^{3x}\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{1}{3}e^{3x}.3^x-\dfrac{ln3}{3}\int e^{3x}.3^xdx=\dfrac{1}{3}e^{3x}.3^x-\dfrac{ln3}{3}.I\)

\(\Rightarrow\left(1+\dfrac{ln3}{3}\right)I=\dfrac{1}{3}e^{3x}.3^x\)

\(\Rightarrow I=\dfrac{1}{3+ln3}.e^{3x}.3^x+C\)

NV
11 tháng 3 2022

1.

\(I=\int\left(2x-1\right)e^{\dfrac{1}{x}}dx=\int2x.e^{\dfrac{1}{x}}dx-\int e^{\dfrac{1}{x}}dx\)

Xét \(J=\int2x.e^{\dfrac{1}{x}}dx\)

Đặt \(\left\{{}\begin{matrix}u=e^{\dfrac{1}{x}}\\dv=2xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-\dfrac{e^{\dfrac{1}{x}}}{x^2}dx\\v=x^2\end{matrix}\right.\)

\(\Rightarrow J=x^2.e^{\dfrac{1}{x}}+\int e^{\dfrac{1}{x}}dx\)

\(\Rightarrow I=x^2.e^{\dfrac{1}{x}}+C\)

20 tháng 3 2016

Đặt \(f_1\left(x\right)=3e^{2x+1};f_2\left(x\right)=\frac{1}{\cos^{2\left(\frac{\Pi x}{4}\right)}}\) . Khi đó \(f\left(x\right)=f_1\left(x\right)+f_2\left(x\right)\)

- Tìm một nguyên hàm của \(f_1\left(x\right)=3e^{2x+1}\) vì nguyên hàm của hàm số \(e^x\) là hàm số \(e^x\) nên theo quy tắc : "Nếu F(x) là một nguyên hàm của hàm số \(f\left(x\right)\) thì \(F\left(y\left(t\right)\right)\) là một nguyên hàm của hàm số \(f\left(y\left(t\right)\right).y't\)                                           trong đó ta giả thiết rằng các hàm số \(f\left(y\left(t\right)\right).y't\)                                                        và \(F\left(y\left(t\right)\right)\) đều được xác định. Đặc biệt là nếu \(y\left(t\right)=at+b,a\ne0\) vafneeus F(x) là một nguyên hàm đối với hàm \(f\left(x\right)\) thì \(\frac{1}{a}F\left(at+b\right)\) là một nguyên hàm đối với hàm số \(f\left(at+b\right)\)" (a)

Nguyên hàm của hàm số \(e^{2x+1}\) là \(F_1\left(x\right)=\frac{1}{2}e^{2x+1}\)

Theo quy tắc "Nếu \(F\left(x\right)\) là một nguyên hàm của hàm số \(f\left(x\right)\) thì \(kF\left(x\right)\) là một nguyên hàm của hàm số \(kf\left(x\right)\)" (b) 

một nguyên hàm của \(3e^{2x+1}\) là hàm số \(3.\frac{1}{2}e^{2x+1}=\frac{3}{2}e^{2x+1}\)

Tìm một nguyên hàm của \(f_2\left(x\right)=\frac{1}{\cos^{2\left(\frac{\Pi x}{4}\right)}}\). Vì hàm số \(\tan x\) là một nguyên hàm của \(\frac{1}{\cos^2x}\) nên theo quy tắc (a) ta có \(\frac{4}{\Pi}\tan\frac{\Pi x}{4}\) là nguyên hàm của \(\frac{1}{\cos^{2\left(\frac{\Pi x}{4}\right)}}\)

Bây giờ áp dụng  quy tắc "Nếu F(x) là một nguyên hàm của hàm f(x) và G(x) là một nguyên hàm của hàm số g(x) thì hàm số F(x) + G (x) là môt nguyên hàm của hàm số f(x)+g(x)" (c)

ta thu được \(\frac{3}{2}e^{2x+1}+\frac{4}{\Pi}\) là nguyên hàm của hàm số \(f\left(x\right)\)

Mọi nguyên hàm của \(f\left(x\right)\) được biểu diễn bởi công thức :

\(F\left(x\right)=\frac{3}{2}e^{2x+1}+\frac{4}{\Pi}\tan\left(\frac{\Pi x}{4}\right)+C\)

23 tháng 2 2023

15 tháng 1 2019

Giải bài 3 trang 126 sgk Giải tích 12 | Để học tốt Toán 12