
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


(Đưa về phương trình bậc 2 ẩn yy, tham số xx)
Pt ⇔2y2+(3x−1)y+x2−2x−6=0⇔2y2+(3x−1)y+x2−2x−6=0
Δ=(3x−1)2−4.2(x2−2x−6)=x2+10x+49=(x+5)2+24>0∀xΔ=(3x−1)2−4.2(x2−2x−6)=x2+10x+49=(x+5)2+24>0∀x
Để phương trình đã cho có nghiệm nguyên thì Δ=(x+5)2+24Δ=(x+5)2+24 phải là một số chính phương.
Đặt (x+5)2+24=k2(k∈N∗)⇔(x+5)2−k2=−24⇔(x+5−k)(x+5+k)=−24=−12.2=−6.4=−4.6=−2.12(x+5)2+24=k2(k∈N∗)⇔(x+5)2−k2=−24⇔(x+5−k)(x+5+k)=−24=−12.2=−6.4=−4.6=−2.12(tích của 2 số nguyên có tổng chẵn, (số bé .số lớn)
Lập bảng xét giá trị ta được các giá trị của xx và yy:
x=−10→y=6tm;x=−10→y=6tm;
x=−6→y=6tm;x=−6→y=6tm;
x=−4→y=4,5ktm;x=−4→y=4,5ktm;
x=0→y=2tmx=0→y=2tm
Vậy...

6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)

\(Pt\Leftrightarrow x^6+\left(x^3-y\right)^2=64\)
\(\Rightarrow x^6\le64\)
\(\Rightarrow-2\le x\le2\)
Mà x nguyên nên \(x\in\left\{-2;-1;0;1;2\right\}\)
Thế vào tìm được y -> làm nốt

\(x^2+x+6=y^2\)
\(\Leftrightarrow x^2+x+6-y^2=0\)
\(\Leftrightarrow4\left(x^2+x+6-y^2\right)=4\cdot0\)
\(\Leftrightarrow4x^2+4x+24-4y^2=0\)
\(\Leftrightarrow\left(4x^2+2x+4xy\right)+\left(2x+1+2y\right)-\left(4xy+2y+4y^2\right)+23=0\)
\(\Leftrightarrow2x\left(2x+1+2y\right)+\left(2x+1+2y\right)-2y\left(2x+1+2y\right)+23=0\)
\(\Leftrightarrow\left(2x+1+2y\right)\cdot\left(2x+1-2y\right)+23=0\)
\(\Leftrightarrow\left(2x+1+2y\right)\cdot\left(2x+1-2y\right)=-23\)
Ta có bảng:
2x + 1 + 2y | 1 | -1 | 23 | -23 |
2x + 1 - 2y | -23 | 23 | -1 | 1 |
x | -6 | 5 | 5 | -6 |
y | 6 | -6 | 6 | -6 |
TM | TM | TM | TM |
Vậy ...

3x2 + y2 + 2x - 2y = 1
\(\Leftrightarrow\)3x2 + y2 + 2x - 2y - 1 = 0
\(\Leftrightarrow\)2x( x+ 1 ) + ( x + 1 ) ( x - 1 ) - y( y - 1 ) = 0
\(\Leftrightarrow\)( x + 1 ) ( 3x + 1 ) - y( y - 1 ) = 0
\(\orbr{\begin{cases}\left(x+1\right)\left(3x+1\right)=0\\y\left(y-1\right)=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=-1\\x=-\frac{1}{3}\end{cases}}\\\hept{\begin{cases}y=0\\y=1\end{cases}}\end{cases}}\)