K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

a/ dễ rồi. Cho f(x) = x + 5 = 0 là ra

b/ cũng thế

c/ \(K\left(x\right)=x+2x+3=0\)

                \(\Leftrightarrow3x+3=0\)

Rồi bạn giải ra

d/ \(H\left(x\right)=25-9x^2=0\)

                \(\Leftrightarrow9x^2=25\)

                \(\Leftrightarrow x^2=\frac{25}{9}\)

                \(\Leftrightarrow x=\frac{5}{3};-\frac{5}{3}\)

PS: Sau mỗi câu có kết luận nhé

26 tháng 4 2017

Tìm nghiệm:

a)x+5=0

   x    =0-5=-5

Vậy nghiệm của đa thức f(x) là -5

b)3-2/3x=0

    -2/3x=-3

          x=-3:(-2/3)= 9/2

vậy 9/2 là nghiệm của đa thức g(x)

c)x+2x+3=0

   3x+3    =0

   3x        =-3

     x        =-3:3=-1

Vậy x=-1 là nghiệm củ đa thức k(x)

d) 25-9x^2=0

9x^2=25

Suy ra x^2=25/9

Suy ra x=5/3 hoặc x=-5/3

Vậy x=5/3 hoặc -5/3 là nghiệm của đa thức h(x)

9 tháng 4 2016

1/a, f(x) - g(x) + h(x) = x3 - 2x2 + 3x +1 - x3 - x + 1 +2x2 - 1

=(x3 - x3) + (-2x2 + 2x2) + (3x - x) + (1 + 1 - 1)

=2x + 1

b, f(x) - g(x) + h(x) = 0

<=> 2x + 1 = 0

<=> 2x = -1

<=> x = -1/2

Vậy x = -1/2 là nghiệm của đa thức f(x) - g(x) + h(x)

2/ a, 5x + 3(3x + 7)-35 = 0

<=> 5x + 9x + 21 - 35 = 0

<=> 14x - 14 = 0

<=> 14(x - 1) = 0

<=> x-1 = 0 

<=> x = 1

Vậy 1 là nghiệm của đa thức 5x + 3(3x + 7) -35

b, x2 + 8x - (x2 + 7x +8) -9 =0

<=> x2 + 8x - x2 - 7x - 8 - 9 =0

<=> (x2 - x2) + (8x - 7x) + (-8 -9)

<=> x - 17 = 0

<=> x =17

Vậy 17 là nghiệm của đa thức x2 + 8x -(x2 + 7x +8) -9

3/ f(x) = g (x) <=> x3 +4x2 - 3x + 2 = x2(x + 4) + x -5

<=> x3 +4x2 - 3x + 2 = x3 + 4x2 + x - 5 

<=> -3x + 2 = x - 5

<=> -3x = x - 5 - 2 

<=> -3x = x - 7

<=>2x = 7

<=> x = 7/2 

Vậy f(x) = g(x) <=> x = 7/2

4/ có k(-2) = m(-2)2 - 2(-2) +4 = 0

=>  4m + 4 + 4 = 0

=> 4m + 8 = 0

=> 4m = -8

=> m = -2

7 tháng 4 2017

mk ngại làm lắm

22 tháng 6 2019

a) \(f\left(x\right)=5x^3-7x^2+2x+5\)

\(\Rightarrow f\left(1\right)=5.1^3-7.1^2+2.1+5\)

\(\Rightarrow f\left(1\right)=5.1-7.1+2+5\)

\(\Rightarrow f\left(1\right)=5-7+7\)

\(\Rightarrow f\left(1\right)=5\)

Vậy f(1) = 5.

\(g\left(x\right)=7x^3-7x^2+2x+5\)

\(\Rightarrow g\left(\frac{1}{2}\right)=7.\left(\frac{1}{2}\right)^3-7.\left(\frac{1}{2}\right)^2+2.\frac{1}{2}+5\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=7.\frac{1}{8}-7.\frac{1}{4}+1+5\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{7}{8}-\frac{14}{8}+6\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{-7}{8}+\frac{48}{8}\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{41}{8}\)

Vậy \(g\left(\frac{1}{2}\right)=\frac{41}{8}\)

22 tháng 6 2019

\(h\left(x\right)=2x^3+4x+1\)

\(\Rightarrow h\left(0\right)=2.0^3+4.0+1\)

\(\Rightarrow h\left(0\right)=0+0+1\)

\(\Rightarrow h\left(0\right)=1\)

Vậy \(h\left(0\right)=1\)

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

11 tháng 8 2020

3)  tìm m để x = -1 là nghiệm của đa thức M(x) = x^2 - mx +2

\(\Rightarrow M\left(x\right)=x^2-mx+2\)

\(\Leftrightarrow\left(-1\right)^2-m\left(-1\right)+2=0\)

\(\Leftrightarrow1-m\left(-1\right)=-2\)

\(\Leftrightarrow m\left(-1\right)=3\)

\(\Leftrightarrow m=-3\)

vậy với m = -3 thì x= -1 là nghiệm của đa thức M(x)

4) \(K\left(x\right)=a+b\left(x-1\right)+c\left(x-1\right)\left(x-2\right)\)

\(\Leftrightarrow K\left(1\right)=a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\)

\(\Leftrightarrow a=1\)

\(\Leftrightarrow K\left(2\right)=a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\)

\(\Leftrightarrow K\left(2\right)=a+b=3\)

\(\Leftrightarrow K\left(0\right)=a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\)

\(\Leftrightarrow a+\left(-b\right)+c2=5\)

ta có \(\hept{\begin{cases}a=1\\a+b=3\\a+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\1+b=3\\1+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\-1+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)

vậy \(a=1;b=2;c=3\)

11 tháng 8 2020

1. a) Sắp xếp :

f(x) = -x5 - 7x4 - 2x3 + x4 + 4x + 9

g(x) = x5 + 7x4 + 2x3 + 2z2 - 3x - 9

b) h(x) = f(x) + g(x)

           = -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9

           = ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 2x2 + x2 ) - 3x + ( 9 - 9 )

           = 3x2- 3x

c) h(x) có nghiệm <=> 3x2 - 3x = 0

                             <=> 3x( x - 1 ) = 0

                             <=> 3x = 0 hoặc x - 1 = 0

                             <=> x = 0 hoặc x = 1

Vậy nghiệm của h(x) là x= 0 hoặc x = 1

2. D(x) = A(x) + B(x) - C(x)

            = 6x3 + 5x2 + x3 - x2 - ( -2x3 + 4x2 )

            = 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2

            = ( 6x3 + x3 + 2x3 ) + ( 5x2 - x2 - 4x2 ) 

            = 9x3 

b) D(x) có nghiệm <=> 9x3 = 0 => x = 0 

Vậy nghiệm của D(x) là x = 0

3. M(x) = x2 - mx + 2

x = -1 là nghiệm của M(x)

=> M(-1) = (-1)2 - m(-1) + 2 = 0

=>              1 + m + 2 = 0

=>              3 + m = 0

=>              m = -3

Vậy với m = -3 , M(x) có nghiệm x = -1

4. K(x) = a + b( x - 1 ) + c( x - 1 )( x - 2 )

K(1) = 1 => a + b( 1 - 1 ) + c( 1 - 1 )( 1 - 2 ) = 1

              => a + 0b + c.0.(-1) = 1

              => a + 0 = 1

              => a = 1

K(2) = 3 => 1 + b( 2 - 1 ) + c( 2 - 1 )( 2 - 2 ) = 3

              => 1 + 1b + c.1.0 = 3

              => 1 + b + 0 = 3

              => b + 1 = 3

              => b = 2

K(0) = 5 => 1 + 5( 0 - 1 ) + c( 0 - 1 )( 0 - 2 ) = 5

              => 1 + 5(-1) + c(-1)(-2) = 5

              => 1 - 5 + 2c = 5

              => 2c - 4 = 5

              => 2c = 9

              => c = 9/2

Vậy a = 1 ; b = 2 ; c = 9/2

12 tháng 4 2019

a) \(f\left(x\right)=3x-9\)

\(f\left(x\right)=3\left(x-3\right)=0\)

Vậy \(x-3=0\Rightarrow x=3\)

Vậy x = 3 là nghiệm của đa thức f(x)

b) \(g\left(x\right)=x^2-5x+4\)

\(g\left(x\right)=x^2-4x-x+4=0\)

\(x\left(x-4\right)-\left(x-4\right)=0\)

\(\left(x-1\right)\left(x-4\right)=0\)

Vậy \(x-1=0\)hoặc \(x-4=0\)

\(\Rightarrow x=1\)hoặc \(x=4\)

Vậy đa thức g(x) có 2 nghiệm là x =1 và x = 4

c) \(h\left(x\right)=2x-\frac{1}{2}\)

\(h\left(x\right)=2x-\frac{1}{2}=0\)

\(2x=\frac{1}{2}\)

\(x=\frac{1}{4}\)

vậy x = 1/4 là nghiệm của đa thức h(x)

d) \(k\left(x\right)=\left(x+2\right).\left(x-3\right)\)

\(k\left(x\right)=\left(x+2\right).\left(x-3\right)=0\)

Vậy \(x+2=0\)hoặc \(x-3=0\)

=> \(x=-2\)hoặc \(x=3\)

Vậy x = -2 và x = 3 là 2 nghiệm của đa thức k(x)

12 tháng 4 2019

ai T I K sai cho tui đấy, có ngon thì chỉ ra tui sai chỗ nào đi >:(

4 tháng 6 2018

:)) 

Ta có:

h(x)= -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2-( 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2)

=> h(x)=-2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2-2x2 + x3 - 3x - 3x3 - x2 + x + 9x - 2)

=> h(x)=x2+5x-2

b,

Cho x2+5x-2=0

=> ... tự giải :))

4 tháng 6 2018

a,f(x)=2x^3+3x^2-2x+3

g(x)=2x^3+3x^2-7x+2

h(x)=f(x)-g(x)=(2x^3+3x^2-2x+3)-(2x^3+3x^2-7x+2)

=2x^3+3x^2-2x+3-2x^3-3x^2+7x-2

=(2x^3-2x^3)+(3x^2-3x^2)+(-2x+7x)+(3-2)

=5x+1

b,Đặt_h(x)=5x+1=0

5x=0-1

5x=-1

x=-1/5

Vậy_nghiệm_của_đa_thức_h(x)_là_-1/5

4 tháng 5 2018

1)34

h)2,5

f)0

i)2/3 và -2/3

e)1,2

5 tháng 5 2018

Bạn có thể ghi rõ cách giải chứ??

7 tháng 4 2017

\(a.\)\(x^2+3x=0\)

\(\Leftrightarrow x\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)

\(b.\)\(5x^3-4x=0\)

\(\Leftrightarrow x\left(5x^2-4\right)=0\)

\(c.\)\(\left(x+2\right)\left(7-4x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\7-4x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{7}{4}\end{cases}}}\)

\(d.\)\(2x\left(x+1\right)-x-1=0\)

\(\Leftrightarrow2x\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}}\)