Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2=2x^2y^2\)
\(\Rightarrow\frac{x^2+y^2}{x^2y^2}=2\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}=2\left(1\right)\)
Do x,y bình đẳng như nhau,giả sử \(x\ge y\)
\(\Rightarrow x^2\ge y^2\)
Với x<1 thì VT của (1) âm mà vế phải dương.(Loại)
Với x=1 thì thỏa mãn
Với x>1 thì dễ thấy KTM
Vậy....
\(x^2-4xy+5y^2=2\left(x-y\right)\)
\(\Leftrightarrow x^2-4xy+5y^2-2x+2y=0\)
\(\Leftrightarrow\left(x-2y\right)^2-2\left(x-2y\right)+1+y^2-2y+1=2\)
\(\Leftrightarrow\left(x-2y-1\right)^2+\left(y-1\right)^2=2\)
Vì x,y là số nguyên nên ta có các trường hợp:
TH1: \(\hept{\begin{cases}x-2y-1=1\\y-1=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=6\\y=2\end{cases}}\)
TH2: \(\hept{\begin{cases}x-2y-1=-1\\y-1=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
TH3: \(\hept{\begin{cases}x-2y-1=-1\\y-1=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=2\end{cases}}\)
TH4: \(\hept{\begin{cases}x-2y-1=1\\y-1=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=0\end{cases}}\)
Vậy \(\left(x;y\right)\in\left\{\left(6;2\right),\left(0;0\right),\left(4;2\right),\left(2;0\right)\right\}\)
\(\)
\(PT\Leftrightarrow\left(x+y\right)\left(x+3y\right)-2\left(x+y\right)-5=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+3y-2\right)=5\)
=> phương trình ước số
b) x2y + x + xy2 + y + 2xy = 9
xy(x + y + 2) + (x + y + 2) = 11
<=> (xy + 1)(x + y + 2) = 11
Xét các TH
+) \(\hept{\begin{cases}xy+1=1\\x+y+2=11\end{cases}}\) <=> \(\hept{\begin{cases}xy=0\\x+y=9\end{cases}}\) <=> x = 0 => y = 9 hoặc y = 0 => x = 9
+) \(\hept{\begin{cases}xy+1=-1\\x+y+2=-11\end{cases}}\)<=> \(\hept{\begin{cases}xy=-2\\x+y=-13\end{cases}}\) <=> \(\hept{\begin{cases}x=-13-y\\y\left(-13-y\right)=-2\end{cases}}\)
<=> \(\hept{\begin{cases}x=-13-y\\y^2+13y-2=0\end{cases}}\)(loại)
+) \(\hept{\begin{cases}xy+1=11\\x+y+2=1\end{cases}}\) <=> \(\hept{\begin{cases}xy=10\\x+y=-1\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-1-y\right)=10\\x=-1-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+y+10=0\\x=-1-y\end{cases}}\)(loại)
+) \(\hept{\begin{cases}xy+1=-11\\x+y+2=-1\end{cases}}\) <=> \(\hept{\begin{cases}xy=-12\\x+y=-3\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-3-y\right)=-12\\x=-3-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+3y-12=0\\x=-3-y\end{cases}}\) (loại)
Áp dụng bất đẳng thức x^2+y^2 ≥ 2xy nên ta có x^2+y^2+xy ≥ 3xy
Mà x^2+y^2+xy=x^2y^2 ≥ 0 nên suy ra x^2y^2+3xy ≤ 0 ⟺−3 ≤ xy ≤ 0
Vì x,y nguyên nên xy nguyên, vậy nên xy∈{−3,−2,−1,0}
Trường hợp xy=−3 ta tìm được các nghiệm (−1,3),(3,−1),(−3,1),(1,−3)
Trường hợp xy=−2 ta tìm được các nghiệm (−1,2),(2,−1),(1,−2),(−2,1)
Trường hợp xy=−1 ta tìm được các nghiệm (−1,1),(1,−1)
Trường hợp xy=0 ta tìm được nghiệm (0,0)
Thử lại thì thấy chỉ có các nghiệm (0,0),(1,−1),(−1,1) thỏa mãn và đó là các nghiệm nguyên cần tìm
Ta có: \(x^2y^2+x^2+y^2+4xy=73\)
<=> \(\left(x^2y^2+4xy+4\right)+x^2+y^2=77\)
<=> \(\left(xy+2\right)^2+x^2=77-y^2\) (1)
Do \(\left(xy+2\right)^2+x^2\ge0\) => \(77-y^2\ge\)0 => \(y^2\le77\)
Do y nguyên và y2 là số chính phương => y2 \(\in\){0; 1; 4; 9; 16; 25; 36; 49; 64}
=> \(y\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5;\pm6;\pm7;\pm8\right\}\)
thay y vào pt (1) ... (tự làm)
Hoặc C2:
\(x^2y^2+x^2+y^2+4xy=73\)
<=> \(\left(x^2y^2+2xy+1\right)+\left(x^2+2xy+y^2\right)=74\)
<=> \(\left(xy+1\right)^2+\left(x+y\right)^2=74=5^2+7^2\)
Xét các TH xảy ra:
+) \(\hept{\begin{cases}xy+1=5\\x+y=7\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=-5\\x+y=7\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=5\\x+y=-7\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=-5\\x+y=-7\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=7\\x+y=5\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=-7\\x+y=5\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=7\\x+y=-5\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=-7\\x+y=-5\end{cases}}\)
(Tự tính)