Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét x=0 ta được:
\(y^2=3+2^0=4\Leftrightarrow y=2\)(do, y Tự nhiên)
Xét x=1: ta có \(y^2=3+2=5\)không có nghiệm Tự nhiên thỏa mãn
Xét x>1: ta có:
\(2^x\ge4\Rightarrow2^x⋮4\)
Do đó: \(2^x+3\)chia 4 dư 3
Mà \(y^2\)là số chính phương chia 4 chỉ dư 0 hoặc 1
Nên \(\forall x>1,\)pt không vó nghiệm tự nhiên thỏa mãn
KL: Vậy (x,y)=(0,2) là nghiệm duy nhất
2/ a/ \(y\left(x-1\right)=x^2+2\)
\(\Leftrightarrow y\left(x-1\right)+1-x^2=3\)
\(\Leftrightarrow\left(x-1\right)\left(y-1-x\right)=3\)
Làm tiếp nhé
b/ \(x^2+xy+y^2=x^2y^2\)
\(\Leftrightarrow4x^2+4xy+4y^2=4x^2y^2\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)-\left(4x^2y^2+4xy+1\right)=-1\)
\(\Leftrightarrow\left(2x+2y\right)^2-\left(2xy+1\right)^2=-1\)
\(\Leftrightarrow\left(2x+2y+2xy+1\right)\left(2x+2y-2xy-1\right)=-1\)
Làm tiếp nhé
1/ \(x^2+x+19=z^2\)
\(\Leftrightarrow4x^2+4x+76=4z^2\)
\(\Leftrightarrow\left(2x+1\right)^2-4z^2=-75\)
\(\Leftrightarrow\left(2x+1-2z\right)\left(2x+1+2z\right)=-75\)
Tới đây đơn giản rồi làm tiếp đi nhé
x2+2y2+2xy-y=3(y-1)
<=> x2+2xy+y2+y2-y=3(y-1)
<=> (x+y)2=3(y-1)-y(y-1)
<=> (x+y)2=(y-1)(3-y)
Nhận thấy, Vế trái (x+y)2 \(\ge\)0 Với mọi x,y
=> Để phương trình có nghiệm thì Vế phải \(\ge\)0
<=> (y-1)(3-y)\(\ge\)0 <=> 1\(\le\)y\(\le\)3
Y nguyên => y1=1; y2=2; y3=3
+/ y=1 => x=-y=-1
+/ y=2 => x=-1
+/ y=3 => x=-y=-3
Các cặp (x,y) nguyên là: (-1,1); (-1; 2); (-3,3)
Lời giải:
\(x^2-y^2=y+1\)
\(\Leftrightarrow x^2=y^2+y+1\)
\(\Leftrightarrow 4x^2=4y^2+4y+4\)
\(\Leftrightarrow (2x)^2=(2y+1)^2+3\)
\(\Leftrightarrow 3=(2x)^2-(2y+1)^2=(2x+2y+1)(2x-2y-1)\)
Vì \(2x+2y+1\) là số tự nhiên lẻ với mọi $x,y\in\mathbb{N}$, và \(2x+2y+1>2x-2y-1\) nên:
\(\left\{\begin{matrix} 2x+2y+1=3\\ 2x-2y-1=1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=1\\ y=0\end{matrix}\right.\) (thỏa mãn)
Vậy........