\(x^2-y^2=y+1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 7 2019

Lời giải:

\(x^2-y^2=y+1\)

\(\Leftrightarrow x^2=y^2+y+1\)

\(\Leftrightarrow 4x^2=4y^2+4y+4\)

\(\Leftrightarrow (2x)^2=(2y+1)^2+3\)

\(\Leftrightarrow 3=(2x)^2-(2y+1)^2=(2x+2y+1)(2x-2y-1)\)

\(2x+2y+1\) là số tự nhiên lẻ với mọi $x,y\in\mathbb{N}$, và \(2x+2y+1>2x-2y-1\) nên:

\(\left\{\begin{matrix} 2x+2y+1=3\\ 2x-2y-1=1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=1\\ y=0\end{matrix}\right.\) (thỏa mãn)

Vậy........

21 tháng 2 2017

Xét x=0 ta được:

 \(y^2=3+2^0=4\Leftrightarrow y=2\)(do, y Tự nhiên)

Xét x=1: ta có \(y^2=3+2=5\)không có nghiệm Tự nhiên thỏa mãn

Xét x>1: ta có:

\(2^x\ge4\Rightarrow2^x⋮4\)

Do đó: \(2^x+3\)chia 4 dư 3

Mà \(y^2\)là số chính phương chia 4 chỉ dư 0 hoặc 1

Nên \(\forall x>1,\)pt không vó nghiệm tự nhiên thỏa mãn

KL: Vậy (x,y)=(0,2) là nghiệm duy nhất

26 tháng 8 2017

Bài 1 m bình phương 2 vế

7 tháng 1 2017

2/ a/ \(y\left(x-1\right)=x^2+2\)

\(\Leftrightarrow y\left(x-1\right)+1-x^2=3\)

\(\Leftrightarrow\left(x-1\right)\left(y-1-x\right)=3\)

Làm tiếp nhé

b/ \(x^2+xy+y^2=x^2y^2\)

\(\Leftrightarrow4x^2+4xy+4y^2=4x^2y^2\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)-\left(4x^2y^2+4xy+1\right)=-1\)

\(\Leftrightarrow\left(2x+2y\right)^2-\left(2xy+1\right)^2=-1\)

\(\Leftrightarrow\left(2x+2y+2xy+1\right)\left(2x+2y-2xy-1\right)=-1\)

Làm tiếp nhé

7 tháng 1 2017

1/ \(x^2+x+19=z^2\)

\(\Leftrightarrow4x^2+4x+76=4z^2\)

\(\Leftrightarrow\left(2x+1\right)^2-4z^2=-75\)

\(\Leftrightarrow\left(2x+1-2z\right)\left(2x+1+2z\right)=-75\)

Tới đây đơn giản rồi làm tiếp đi nhé

1 tháng 12 2017

x2+2y2+2xy-y=3(y-1)

<=> x2+2xy+y2+y2-y=3(y-1)

<=> (x+y)2=3(y-1)-y(y-1)

<=> (x+y)2=(y-1)(3-y)

Nhận thấy, Vế trái (x+y)2 \(\ge\)0 Với mọi x,y

=> Để phương trình có nghiệm thì Vế phải \(\ge\)0

<=> (y-1)(3-y)\(\ge\)0 <=> 1\(\le\)y\(\le\)3

Y nguyên => y1=1; y2=2; y3=3

+/ y=1 => x=-y=-1

+/ y=2 => x=-1

+/ y=3 => x=-y=-3

Các cặp (x,y) nguyên là: (-1,1); (-1; 2); (-3,3)

ta có:

\(x^3+3x^2+3x+1\ge x^3+x^2+x+1>x^3\)

\(\Rightarrow\left(x+1\right)^3\ge x^3+x^2+x+1>x^3\Rightarrow\left(x+1\right)^3=x^3+x^2+x+1\)

<=>x=0=>2y=1=>y=0

Vậy nghiệm của pt:(x;y)=(0;0)