Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
và \(\sqrt{x}=\sqrt{2012}=2\sqrt{503}-\sqrt{y}\)
=> \(x=2012-4\sqrt{503y}+y\) là số nguyên dương
=> \(\sqrt{503y}\) là số nguyên dương
mà 503 là số nguyên tố và 0 < y < 2012
=> y = 503
=> x = 503
Kết luận:...
Bài đc đăng vào ngày 14/8/2019 mà đến 19/6/2020 mới đc giải?
\(VD1\)
Giả sử \(x\le y\Rightarrow\sqrt{x}\le\sqrt{y}\)
\(\Rightarrow2\sqrt{x}\le\sqrt{x}+\sqrt{y}=9\)
\(\Rightarrow\sqrt{x}\le4,5\)
\(\Rightarrow x\le4,5^2\)
\(\Rightarrow x\le20,25\)
\(\Rightarrow x\in\left\{0,1,4,9,16\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{0,1,2,3,4\right\}\)
TH1 : \(x=0\Rightarrow\sqrt{x}=0\Rightarrow\sqrt{y}=9\Rightarrow y=81\)
TH2 : \(x=1\Rightarrow\sqrt{x}=1\Rightarrow\sqrt{y}=8\Rightarrow y=64\)
Th3 : \(x=4\Rightarrow\sqrt{x}=2\Rightarrow\sqrt{y}=7\Rightarrow y=49\)
Th4 : \(x=9\Rightarrow\sqrt{x}=3\Rightarrow\sqrt{y}=6\Rightarrow y=36\)
Th5 : \(x=16\Rightarrow\sqrt{x}=4\Rightarrow\sqrt{y}=5\Rightarrow y=25\)
Vì x , y có vai trò như nhau nên các trường hợp còn lại chỉ là đổi chỗ giữa x và y . ( vd y = 0 thì x = 81 )
KL....
VD2: Ta có:
x+y+z=xyz ( 1 )
Chia 2 vế của ( 1 ) cho xyz\(\ne\)0 ta đc:
\(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)
Giả sử \(x\ge y\ge z\ge1\)thì ta có:
\(1=\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)
\(\Rightarrow1\le\frac{3}{z^2}\Rightarrow z^2\le3\Leftrightarrow z=1\)
Thay z=1 vào ( 1 ) ta đc:
x+y+1=xy
\(\Leftrightarrow\)xy -x - y = 1
\(\Leftrightarrow\)x ( y - 1 ) - ( y - 1 ) = 2
\(\Leftrightarrow\)( x - 1 ) ( y - 1 ) =2
Mà \(x-1\ge y-1\)nên \(\hept{\begin{cases}x-1=2\\y-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
Vậy nghiệm dương của phương trình là các hoán vị của 1, 2, 3
Đặt\(\sqrt{x}=a\)điều kiện \(x\ge0\)
Ta có\(a^4=a\)
\(\Leftrightarrow a^4-a=0\)
\(\Leftrightarrow a\left(a^3-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a=0\\a^3=1\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\a=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\\sqrt{x}=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)Thỏa mãn điều kiện
Vậy\(x=0;1\)
Ta có: \(x+\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2\)
\(\Rightarrow\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2-x=a\)
\(\Rightarrow x+\sqrt{x+\sqrt{x}}=a^2\)\(\Rightarrow\sqrt{x+\sqrt{x}}=a^2-x=b\)
\(\Rightarrow x+\sqrt{x}=b^2\Rightarrow\sqrt{x}\left(\sqrt{x}+1\right)=b^2\)
Có √x và √(x+1) là 2 số liên tiếp và b^2 là số chính phương nên √x =0 hoặc √x +1 =0
=> x =0 hoặc √x = -1 ( vô nghiệm)
Với x =0 => y=0
Vậy (x;y) = (0;0)
a. (x√13+√5)(√7−x√3)=0(x13+5)(7−x3)=0
⇔x√13+√5=0⇔x13+5=0 hoặc √7−x√3=07−x3=0
+ x√13+√5=0⇔x=−√5√13≈−0,62x13+5=0⇔x=−513≈−0,62
+ √7−x√3=0⇔x=√7√3≈1,537−x3=0⇔x=73≈1,53
Vậy phương trình có nghiệm x = -0,62 hoặc x = 1,53.
b. (x√2,7−1,54)(√1,02+x√3,1)=0(x2,7−1,54)(1,02+x3,1)=0
⇔x√2,7−1,54=0⇔x2,7−1,54=0 hoặc √1,02+x√3,1=01,02+x3,1=0
+ x√2,7−1,54=0⇔x=1,54√2,7≈0,94x2,7−1,54=0⇔x=1,542,7≈0,94
+ √1.02+x√3,1=0⇔x=−√1,02√3,1≈−0,571.02+x3,1=0⇔x=−1,023,1≈−0,57
Vậy phương trình có nghiệm x = 0,94 hoặc x = -0,57
Bình phương lên ta được:
\(x+\sqrt{x+\sqrt{x}}=y^2\Rightarrow\sqrt{x+\sqrt{x}}=y^2-x=k\left(k\in N\right)\)
Lại bình phương tiếp ta được:
\(x+\sqrt{x}=k^2\Rightarrow\sqrt{x}\left(\sqrt{x}+1\right)=k^2\left(1\right)\)
Mà \(k\) là STN nên \(\sqrt{x}\) là số tự nhiên. Do đó, từ \(\left(1\right)\) suy ra \(k^2\) là SCP và là tích \(2\) STN liên tiếp nên số nhỏ bằng \(0\), tức là \(\sqrt{x}=0\Rightarrow x=0\Rightarrow y=0\)
Vậy nghiệm của phương trình là \(\left(x,y\right)=\left(0;0\right)\)
giải hộ mik đi NCS_Nocopyrightsounds!