Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Trương Tiền Phương - Toán lớp 9 - Học toán với OnlineMath
2 = 1.2 => \(\dfrac{1}{2}\) = \(\dfrac{1}{1.2}\) = 1 - \(\dfrac{1}{2}\)
TT \(\dfrac{1}{6}=\dfrac{1}{2}-\dfrac{1}{3}\)
.................
=> VT = 1 - \(\dfrac{1}{x+1}\) = \(\dfrac{\sqrt{2012-x}+2012}{\sqrt{2012-x}+2013}\)
Đặt \(\sqrt{2012-x}+2012=y\)
=> 1 - \(\dfrac{1}{x+1}\) = \(\dfrac{y}{y+1}\)
=> \(\dfrac{x}{x+1}\) = \(\dfrac{y}{y+1}\)
=> x = y
<=> x = \(\sqrt{2012-x}+2012\)
<=> 2012 - x + \(\sqrt{2012-x}\) = 0
<=> \(\sqrt{2012-x}=0\)
<=> x = 2012
(Bình thường mà)
Tính \(\Delta_x=\left(2012+y\right)^2-4\left(2013+y\right)=\left(y+2010\right)^2-8\)
Để pt có nghiệm nguyên thì trước hết \(\Delta_x\) chính phương.
Mà bản thân số \(\left(y+2010\right)^2\) đã chính phương nên ta chỉ cần tìm 2 số chính phương lệch nhau 8 đơn vị.
Đó là số \(1\) và \(9\).
\(\left(y+2010\right)^2=9\) vì đây là số chính phương lớn hơn. Đến đây bạn tìm được \(y\) và sẽ suy ra \(x\).
Mình chỉ có thắc mắc là tại sao \(\Delta_x\) phải là chính phương thì nghiệm nguyên thôi?
\(y^2=-2\left(x^6-x^3y-32\right)\Leftrightarrow2x^6-2x^3y+y^2=64\Leftrightarrow4x^6-4x^3y+2y^2=128\)
\(\Leftrightarrow\left(2x^3-y\right)^2+y^2=128\)
# Chứng minh và áp dụng bất đẳng thức sau \(A^2+B^2\ge\frac{\left(A+B\right)^2}{2}\), ta có :
\(\left(2x^3-y\right)^2+y^2\ge\frac{\left(2x^3-y+y\right)^2}{2}=2x^6\Leftrightarrow128\ge2x^6\Leftrightarrow x^6\le64\Leftrightarrow-2\le x^2\le2\)
Mà x nguyên ( gt ) nên x có các giá trị sau : \(-2;-1;0;1;2\)
Nên các giá trị của x vào phương trình và giải tìm y ( lưu ý xét điều kiện nguyên của y )