\(x^2\left(y-5\right)-xy=x-y+1\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2020

ta có \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)

zì 5 , 7 là 2 số nguyên tố cùng nhau . Nên

\(\hept{\begin{cases}x+2y=5m\\x^2+xy+y^2=7m\end{cases}m\inℤ}\)

từ \(x+2y=5m=>5m-2y=x.\)thay zô \(x^2+xy+y^2=7m\)zà rút gọn ta được

\(\left(5m-2y\right)^2+\left(5m-2y\right)y+y^2=7m\Leftrightarrow3y^2-15my+25m^2-7m=0\left(1\right)\)

=>\(3\left(y^2-5my\right)+25m^2-7m=0=>3\left(y-\frac{5m}{2}\right)^2-\frac{75m^2}{4}=7m-25m^2\)

=>\(3\left(y-\frac{5m}{2}\right)^2=\frac{1}{4}\left(-25m^2+28m\right)\)

zì \(3\left(y-\frac{5m}{2}\right)^2\ge0\forall m,y\)

=>\(\frac{1}{4}\left(-25m^2+28m\right)\ge0\Leftrightarrow25m^2-28m\le0\Leftrightarrow m\left(m-\frac{28}{25}\right)\le0\Leftrightarrow0\le m\le\frac{28}{25}\)

mà \(m\inℤ\)nên \(m\in\left\{0,1\right\}\)

zới m=0 thay zô (1) ta được y=0. từ đó tính đc x=0

zới m =1 thây zô (1) ta được \(3y^2-15y+18=0=>y^2-5y+6=0=>\orbr{\begin{cases}y=2\\y=3\end{cases}}\)

zới y=2 , m=1 thì ta tính đc x=1

zới y=3 , m=1 thì ta tính đc x=-1

zậy \(\left(x,y\right)\in\left\{\left(0,0\right);\left(1,2\right)\left(-1,3\right)\right\}\)

AH
Akai Haruma
Giáo viên
10 tháng 2 2017

Câu 1)

Thử \(x=1,2,3,4,5\) ta thấy chỉ \(x=1\) thỏa mãn \(y=1\)

Với \(x\geq 6\)

Để ý rằng \(1!+2!+3!+...+x!=3+3!+4!+...+x!\) luôn chia hết cho $3$. Do đó \(y^3\vdots 3\rightarrow y\vdots 3\rightarrow y^3\vdots 27\)

Với \(x\geq 6\) thì \(x!\) luôn chia hết cho $27$. Do đó để \(y^3\vdots 27\) thì \(1!+2!+...+5!\) cũng phải chia hết cho $27$ hay $153$ chia hết cho $27$. Điều này vô lý.

Do đó phương trình chỉ có bộ nghiệm \((x,y)=(1,1)\) thỏa mãn.

AH
Akai Haruma
Giáo viên
10 tháng 2 2017

Bài 2)

Ta thấy \(3(x^2+y^2+xy)=x+8y\geq 0\) nên chắc chắn tồn tại ít nhất một số nguyên không âm.

TH1: \(x\geq 0\)

\(\text{PT}\Leftrightarrow 3y^2+y(3x-8)+3x^2-x=0\)

Để PT có nghiệm thì \(\Delta=(3x-8)^2-12(3x^2-x)\geq 0\)

\(\Leftrightarrow -27x^2-36x+64\geq 0\)

Giải HPT trên ta suy ra \(x\leq 1\). Do đó \(x=0\) hoặc $1$

Nếu \(x=0\Rightarrow y=0\)

Nếu \(x=1\rightarrow y=1\)

TH2: \(x<0\) thì \(y> 0\)

\(\text{PT}\Leftrightarrow 3x^2+x(3y-1)+3y^2-8y=0\)

Để PT có nghiệm thì \(\Delta =(3y-1)^2-12(3y^2-8y)\geq 0\)

\(\Leftrightarrow -27y^2+90y+1\geq 0\rightarrow y\leq 3\rightarrow y=1,2,3\)

Nếu \(y=1\rightarrow x=1\)

Nếu \(y=2,3\) không có $x$ thỏa mãn.

Vậy \((x,y)=(0,0),(1,1)\)

20 tháng 3 2017

bạn hỏi Gemini đi anh ý biết đấy

20 tháng 3 2017

k minh di mink giai cho de lam

27 tháng 11 2016

Với có ít nhất x,y = 1 thì VT > VP

Với x > 1, y > 1 thì

\(\frac{1}{x^2}+\frac{1}{xy}+\frac{1}{y^2}\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}< 1\)

Hay VT < 1

Vậy PT không có nghiệm nguyên dương

6 tháng 12 2017

1/ Ta chứng minh với \(x>6\)thì \(10.2^x>13x^2\) cái này dùng quy nạp chứng minh được:

Từ đây ta xét với \(x>6\)thì

\(\Rightarrow\hept{\begin{cases}10.2^6-13x^2>0\\10-3x< 0\end{cases}}\)

\(\Rightarrow\)Phương trình vô nghiệm.

Giờ chỉ cần kiểm tra \(x=1;2;3;4;5;6\) xem cái nào thỏa mãn nữa là xong.

6 tháng 12 2017

2/ \(3^x+1=\left(y+1\right)^2\)

\(\Leftrightarrow3^x=y\left(y+2\right)\)

Với \(y=1\)

\(\Rightarrow x=1\)

Với \(y>1\)

Với \(y⋮3\)\(\Rightarrow y+2⋮̸3\)

Với \(y+2⋮3\)\(\Rightarrow y⋮̸3\)

Vậy \(x=1,y=1\)

\(PT\Leftrightarrow5x^2+x\left(5y-7\right)+5y^2-14y=0\)

\(\Delta=\left(5y-7\right)^2-4.5.\left(5y^2-14y\right)\)

   \(=196-3\left(5y-7\right)^2\)

Để phương trình có nghiệm thì \(\Delta\ge0\Rightarrow\left(5y-7\right)^2\le65\)

Mặt khác \(5y-7\equiv3\left(mod5\right)\)

\(\Rightarrow\left(5y-7\right)^2\equiv4\left(mod5\right)\)

do đó \(\left(5y-7\right)^2\in\left\{4,9,14,19,24,29,34,39,44,49,54,59,64\right\}\)

mà (5y-7)2 là số chính phưng nên \(\left(5y-7\right)^2\in\left\{4,9,64\right\}\)

Từ đó tính ra

\(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)

\(\Leftrightarrow5x^2+5xy+5y^2-7x-14y=0\)

\(\Leftrightarrow5x^2+x\left(5y-7\right)+5y^2-14y=0\)

\(\Rightarrow\Delta_x=\left(5y-7\right)^2-4\cdot5\cdot\left(5y^2-14y\right)\)

\(=-75y^2+210y+49\)

\(=196-3\left(25y^2-2\cdot5y\cdot7+79\right)\ge0\)

\(=196-3\left(5y-7\right)^2\ge0\)

Để phương trình có nghiệm nguyên thì \(\Delta_x\ge0\Leftrightarrow\left(5y-7\right)^2\le65\)

Nhận thấy \(5y-7\equiv3\left(mod5\right)\Rightarrow\left(5y-7\right)^2\equiv4\left(mod5\right)\)

Do đó \(\left(5y-7\right)^2\in\left\{4;9;14;19;24;29;34;39;44;49;54;59\right\}\)

Mà \(\left(5y-7\right)^2\)chinh phương nên \(\left(5y-7\right)^2\in\left\{4;9;49\right\}\)

Đến đây ta xét trường hợp là ra.