\(6x^2+10y^2+2xy-x-28y+18=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 3 2021

\(6x^2+\left(2y-1\right)x+10y^2-28y+18=0\)

\(\Delta=\left(2y-1\right)^2-24\left(10y^2-28y+18\right)\ge0\)

\(\Leftrightarrow-236y^2+668y-431\ge0\)

\(\Rightarrow\dfrac{167-2\sqrt{615}}{118}\le y\le\dfrac{167+2\sqrt{615}}{118}\)

\(\Rightarrow y=1\)

Thế vào pt đầu ...

5 tháng 12 2018

\(x^2-3y^2+2xy-2x-10y+4=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1-4y^2-8y-4+7=0\)

\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)+1-\left(2y+2\right)^2+7=0\)

\(\Leftrightarrow\left(x+y-1\right)^2-\left(2y+2\right)^2=-7\)

\(\Leftrightarrow\left(x-y-3\right)\left(x+3y+1\right)=-7\)

Từ đó tìm ước và tính.

1 tháng 10 2017

\(x^2-3y^2+2xy-2x-10y+4=0\)

\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)+1-\left(4y^2+8y+4\right)+7=0\)

\(\Leftrightarrow\left(x+y-1\right)^2-\left(2y+2\right)^2=-7\)

\(\Leftrightarrow\left(x+y-1+2y+2\right)\left(x+y-1-2y-2\right)=-7\)

\(\Leftrightarrow\left(x+3y+1\right)\left(x-y-3\right)=-7\)

Sau đó bạn lập luận \(x;y\in Z\)rồi tự làm nhé

11 tháng 6 2015

=> (x2 + 2xy + y2) - 2x  - 10y - 4y2 + 4 = 0

<=> (x+y)2 - 2.(x+y) + 1 - (4y2 + 8y + 4) + 7 = 0

<=> (x+ y - 1)2 - (2y + 2)2  =  -7

<=> (x + y - 1 + 2y + 2).(x + y - 1 - 2y - 2) = -7

<=> (x + 3y + 1).(x - y - 3) = -7

Vì x; y nguyên nên x + 3y + 1 \(\in\) Ư(-7) = {7;-7;1;-1} .Hơn nữa; x; y dương nên x + 3y + 1 > 1

=> x + 3y + 1 = 7 

=> x - y  - 3 = -1

=> (x+3y+1) - (x - y - 3) = 4y + 4 = 8 => y = 1 

=> x = 7 - 1 - 3y = 3

Vậy x = 3; y = 1

 

11 tháng 6 2015

Coi phương trình bậc 2 ẩn x tham số y ta có :

x^2+2(y-1)x-(3y^2+10y-4)=0

Để phương trình nghiệm  nguyên x thì điều kiện cần là phải là số chính phương 

Ta có := (y-1)^2+3y^2+10y-4=4y^2+8y-3=k^2(k thuộc N)

=>(2y+2)^2-k^2=7

<=>(2y+2-k)(2y+2+k)=(-7)(-1)=1.7

Vì 2y+2+k > 2y +2-k nên ta có bảng sau:

2y+2+k7-1
2y+2-k1-7
y1-3
k3           -5 ( loại)

Voi y =  1 ta co :x^2+2(y-1)x-(3y^2+10y-4)=0

Trở thành:x^2 - 9=0=>x=3;x=-3

Vấp pt đã cho ở 2 nghiệm nguyên là (3;1) và (-3;1)

 

 

5 tháng 2 2018

4.

(1) => y=2m-mx thay vào (2) ta được x+m(2m-mx)=m+1

<=> x-m2x=-2m2+m+1

<=> x(1-m)(1+m)=-(m-1)(1+2m)

với m=-1 thì pt vô nghiệm

với m=1 thì pt vô số nghiệm => có nghiệm nguyên => chọn

với m\(\ne\pm\) 1 thì x=\(\frac{-2m-1}{m+1}\)=\(-2+\frac{1}{m+1}\)

=> y=2m-mx=xm-m(-2+\(\frac{1}{m+1}\)) =2m+2m-\(\frac{m}{m+1}\)=4m-1+\(\frac{1}{m+1}\)

để x y nguyên thì \(\frac{1}{m+1}\)nguyên ( do m nguyên)

=> m+1\(\in\)Ư(1)={1;-1}

=> m\(\in\){0;-2} mà m nguyên âm nên m=-2 

vậy m=-2 thì ...
P/s hình như 1 2 3 sai đề

8 tháng 2 2018

Phương trình Câu 3 là \(x^4-2x^2+m-1\) ạ hihi

1 tháng 11 2020

Bài 1 :

a) \(x^3-x^2-x-2=0\)

\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)

\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)

\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)

Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)

Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)

Vậy \(x=2\)

1 tháng 11 2020

Bài 2: 

\(2x^2+y^2-2xy+2y-6x+5=0\)

\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)

Vì \(\left(x-y-1\right)^2\ge0\forall x,y\)\(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)

Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)

Vậy \(x=2\)và \(y=1\)