\(x^6-2x^3y-x^4+y^2+7=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2018

\(x^6-2x^3y-x^4+y^2+7=0\)

\(\Leftrightarrow\left(x^6-2x^3y+y^2\right)-x^4+7=0\)

\(\Leftrightarrow\left(x^3-y\right)^2-\left(x^2\right)^2=-7\)

\(\Leftrightarrow\left(x^3-y+x^2\right)\left(x^3-y-x^2\right)=-7\)

Liệt kê ước 7 ra rồi lm đc

17 tháng 7 2016

 <=> x^2 + y^2 + z^2 - xy - 3y - 2z + 4 <= 0 
<=> (x^2 - xy + 1/4y^2) + (3/4y^2 - 3y + 3) + (z^2 - 2z + 1) <= 0 
<=> (x^2 - xy + 1/4y^2) + 3(1/4y^2 - y + 1) + (z^2 - 2z + 1) <=0 
<=> (x-1/2y)^2 + 3(1/2y-1)^2 + (z-1)^2 <=0 

Nhận xét: 3 cái bình phương đều >=0 với mọi x,y,z nên VT>=0 với mọi x,y,z. Để bất phương trình đúng thì VT=0 <=> 3 cái đồng thời = 0 
<=> x = 1/2y và 1/2y = 1 và z = 1. 
Bạn giải 3 phương trình trên => x = 1, y = 2, z = 1.

17 tháng 7 2016

Quá dễ bằng 0

31 tháng 3 2020

a)11x-7<8x+7

<-->11x-8x<7+7

<-->3x<14

<--->x<14/3 mà x nguyên dương 

---->x \(\in\){0;1;2;3;4}

31 tháng 3 2020

b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4

<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)

<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48

<--->21x>-45

--->x>-45/21=-15/7  mà x nguyên âm 

----->x \(\in\){-1;-2}

2 tháng 2 2020

\(x^2-y^2+2x-4y-10=0\)

\(\Leftrightarrow x^2+2x+1-\left(y^2+y+9\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2-5=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2=5\)

\(\Leftrightarrow\left(x+1+y+2\right)\left(x+1+y-2\right)=5\)

\(\Leftrightarrow\left(x+y+1+2\right)\left(x-y-2-1\right)=5\)

\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=5\)

Ta có bảng GT:

x+y+315-1-5
x-y-151-5-1
x22-4-4
y-400-4

Vậy (x,y)= (2;4) (2;0) (4;0);(-4;4)

x,y nguyên dương là:

=> Nghiệm của nguyên dương PT là: (x,y)=(2,0)

10, \(5x^3+11y^3=-13z^3\)

\(\Rightarrow5x^3+11y^3⋮13\)

\(\Rightarrow x,y⋮13\)

\(\Rightarrow z⋮13\)

Đến đây dùng lùi vô hạn nhé

6 tháng 2 2020

4. Nếu em đã tìm hiểu về giai thừa thì ở bài 4, chúng ta có thêm điều kiện: x, y, z là số tự nhiên và x,y < z

+) TH1: x = 0; y = 0 => z = 2 (tm)

+) TH2: x = 0; y = 1=> z = 2(tm)

+) Th3: x= 1; y = 0 => z = 2(tm)

+) TH4: x = 1; y= 1 => z = 2 (tm)

+) TH5: y > 1 

với \(x\le y\)

Khi đó: x! = 1.2.3...x; 

            y! = 1.2.3...x.(x+1)...y

            z! = 1.2.3....x.(x+1)...y(y+1)...z

Từ (4) <=> 1 + (x+1).(x+2)...y = (x + 1)....y(y+1)...z

<=> ( x+1)(x+2)...y[(y+1)...z - 1 ] = 1

<=> \(\hept{\begin{cases}\left(x+1\right)\left(x+2\right)...y=1\\\left(y+1\right)...z-1=1\end{cases}}\)vô lí vì y > 1

Với \(y\le x\)cũng làm tương tự và loại'

Vậy:...

11 tháng 11 2016

Hỏi đáp Toán

ko phải bài của mk nên bn ko tick cx đc,mk chỉ đăng lên để giúp bn thôi

11 tháng 11 2016

vậy nghiệm nguyên dương của PT là bao nhêu