Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) { x +2y +3z =20
{3x+5y +4z =37
{ -3x - 6y - 9z = -60
{ 3x + 5y + 4z = 37
Cộng lại : -y - 5z = -23
<=> y + 5z = 23
<=> y = 23 - 5z
{ x +2y +3z =20
{3x+5y +4z =37
{ -5x - 10y - 15z = -100
{ 6x + 10y + 8z = 74
Cộng
=> -x - 7z = -26
<=> x = 26 - 7z
<=> (26 - x)/7 = z
=> y = 23 - 5( 26 - x )/7
Thế : Ta tính được :
x = 7n + 2
y = 3 - 5n
z = n + 4
Vậy 3 - 5n ≥ 0
<=> -5n ≥ -3
<=> n ≤ 3/5
(3 - y)/5 = n
Vì z = n + 4 nguyên dương thì n nguyên luôn thì (3 - y)/5 chia hết
Bắt đầu y = 3 là số nguyên nhỏ nhất
y = 3 => n = 0 => z = 4 và x = 2
y = 8 => n = -1 => z = 3 và x = -5 ( loại do x là nguyên âm)
Như vậy cặp số nguyên nhỏ nhất (x ; y ; z) = (2 ; 3 ; 4)
a/
x= (25y + 1)/16 = y + (9y+1)/16
Gọi k nguyên nhỏ nhất k = (9y+1)/16
y= (16k-1)/9 = (18k-2k -1)/9 = 2k - (2k+1)/9
Ta thấy k=4 thỏa
=> y =7 => x=11
b/ 41x-37y=187
x= (187 + 37y)/41 = [(164 + 41y) + 23 -4y]/41 = 4 + y + (23-4y)/41
Gọi k nguyên nhỏ nhất k=(23-4y)/41
=> y = (23- 41k)/4 = (24 -40k -1-k)/4 = 6 -10k -(1+k)/4
=> (1+ k)/4 nguyên
=> k=-1
=> y=16
=> x=19
3/ \(P=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+2\left(\frac{16}{ab}+ab\right)+\frac{2}{ab}\ge\)
\(\ge\frac{2.4}{\left(a+b\right)^2}+4\sqrt{\frac{16}{ab}.ab}+\frac{2.4}{\left(a+b\right)^2}\ge\frac{8}{4^2}+4\sqrt{16}+\frac{8}{4^2}=17\)
Dấu "=" xảy ra khi a = b = 2
Vậy Min P = 17 <=> a = b = 2
\(A=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2=\left[\frac{x_1^2+x^2_2}{x_1x_2}\right]^2-2=\left[\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right]^2-2\)
\(=\left[\frac{\left(2m-2\right)^2}{2m-5}-2\right]^2-2\)\(=\left(\frac{4m^2-8m+4}{2m-5}-2\right)^2-2=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)
A nguyên khi \(\left(2m-1+\frac{9}{2m-5}\right)^2\in Z\)
\(\Leftrightarrow B=2m-1+\frac{9}{2m-5}=\frac{8m^2-12m+14}{2m-5}\)\(=\sqrt{k}\) với k là một số nguyên dương.
\(\Rightarrow8m^2-12m+14=\sqrt{k}\left(2m-5\right)\)\(\Leftrightarrow8m^2-2\left(6+\sqrt{k}\right)m+14+5\sqrt{k}=0\text{ (1)}\)
(1) có nghiệm m khi \(\Delta'=\left(\sqrt{k}+6\right)^2-8\left(14+5\sqrt{k}\right)\ge0\)
\(\Leftrightarrow k-28\sqrt{k}-76\ge0\Leftrightarrow\sqrt{k}\le14-4\sqrt{17}<0\text{ (loại) hoặc }\sqrt{k}\ge14+4\sqrt{17}\)
\(\Leftrightarrow k\ge\left(14+4\sqrt{17}\right)^2\approx929,78\Rightarrow k\ge930\)
Vậy \(m=\frac{6+\sqrt{k}+\sqrt{k-28\sqrt{k}-76}}{8}\text{ hoặc }m=\frac{6+\sqrt{k}-\sqrt{k-28\sqrt{k}-76}}{8}\) với k là một số nguyên lớn hợn hoặc bằng 930.