\(x+y+z=xyz\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

#) Giải

Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.  
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}.  
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.  
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.  
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.

Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).

                                      ~ Hok tốt ~

                                                                      Bài giải

                                       Vì x, y, z nguyên dương nên ta giả sử \(1\le x\le y\le z\)

                Theo bài ra \(1=\frac{1}{yz}+\frac{1}{yx}+\frac{1}{zx}< \frac{1}{x^2}+\frac{1}{x^2}+\frac{1}{x^2}=\frac{3}{x^2}\)

                        \(\Rightarrow\text{ }x\le3\text{ }\Rightarrow\text{ }x=1\)

Thay vào đầu bài ta có : \(1+y+z=yz\text{ }\Rightarrow\text{ }y-yz+1=0\)

\(\Rightarrow\text{ }y\left(1-z\right)-\left(1-z\right)+2=0\)

\(\Rightarrow\text{ }\left(y-1\right)\left(1-z\right)=2\)

\(TH1\text{ : }y-1=1\text{ }\Rightarrow\text{ }y=2\text{ và }z-1=2\text{ }\Rightarrow\text{ }z=3\)

\(TH2\text{ : }y-1=2\text{ }\Rightarrow\text{ }y=3\text{ và }z-1=1\text{ }\Rightarrow\text{ }z=2\)

Vậy có hai cặp nghiệm nguyên thỏa mãn \(\left(1\text{ , }2\text{ , }3\right)\text{ ; }\left(1\text{ , }3\text{ , }2\right)\)

27 tháng 6 2019

Ta có:  A = \(\left|2x-2\right|+\left|2x-2013\right|\)

=> A = \(\left|2x-2\right|+\left|2013-2x\right|\)\(\ge\)\(\left|2x-2+2013-2x\right|=\left|2011\right|=2011\)

=> A \(\ge\)2011

Dấu "=" xảy ra <=> (2x - 2)(2013 - 2x) \(=\)0

         => \(2\left(x-1\right)\left(2013-2x\right)=0\)

     => \(\left(x-1\right)\left(2013-2x\right)=0\)

   =>  \(1\le x\le\frac{2013}{2}\)

Vậy Amin = 2011 <=> \(1\le x\le\frac{2013}{2}\)

27 tháng 6 2019

A = |2x - 2| + |2x - 2013| = |2x - 2| + |2013 - 2x| ≥ |2x - 2 + 2013 - 2x| = |2011| = 2011

Dấu "=" xảy ra <=> (2x - 2)(2013 - 2x) ≥ 0

<=> (2x - 2)(2x - 2013) ≤ 0

<=> 1 ≤ x ≤ 2013/2

Mà x là số nguyên ....

Vậy Amin = 2011 tại 1 ≤ x ≤ 2013/2

3 tháng 1 2018

x=1; y=2; z=3

hoặc x=-1; y=-2; z=-3

3 tháng 1 2018

+Xét \(x=y=z=0\)

+ Xét trong x;y;z có 1 số bằng 0

+ Xét \(x;y;z\ne0\)

Giả sử \(0< x\le y\le z\)

\(x+y+z=xyz\)

\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\le\frac{3}{x^2}\)

\(\Rightarrow x^2\le3\)

\(\Rightarrow x=1\)

Thay x=1 ta được:

\(\frac{1}{y}+\frac{1}{z}+\frac{1}{yz}\le\frac{3}{y}\)

\(\Rightarrow y\le3\)

\(\Rightarrow y\in\left\{1;2;3\right\}\)

Bạn tự giải tiếp nhé

2 tháng 12 2019

Ta có \(xy=\frac{yz}{2}=\frac{zx}{4}\)  => \(\frac{xyz}{z}=\frac{xyz}{2x}=\frac{xyz}{4y}\)mà \(xyz=64 \ne 0\)

                                                => \(z=2x=4y\)

Đặt \(z=2x=4y=k\)

=> \(z=k , x=\frac{k}{2} , y=\frac{k}{4}\)

Ta lại có : \(xyz=64\)

     => \(\frac{k}{2}.\frac{k}{4}.k=64\)

     => \(k^3.\frac{1}{8}=64\)

=> \(k^3=512=8^3\)

=> \(k=8\)

=> \(\hept{\begin{cases}x=\frac{8}{2}=4\\y=\frac{8}{4}=2\\z=8\end{cases}}\)

Vậy x=4 , y=2 , z=8

2 tháng 12 2019

@Nguyễn Thùy Trang Thanks nhiều !

nha bạn chúc bạn học tốt nha 

Có: x/0,3=2z=>x=0,3.2z=0,6z=3/5z

Thay vào z-3x=1 có:

z-3.3/5z=1=>z-9/5z=1=>-4/5.z=1=>z=-5/4

=>x=3/5.(-5/4)=-3/4

Mà: y/0,2=2z=2.(-5/4)=-5/2

=>y=0,2.(-5/2)=-1/2

Vậy x= -3/4; y= -1/2

24 tháng 8 2021

MK cần gấp lắm giúp mk với mn !

20 tháng 6 2019

2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\)    =>  \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy x,y,z lần lượt là 20; 12; 42

20 tháng 6 2019

#)Giải :

Bài 2 :

d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow2k.3k.5k=810\)

\(\Rightarrow30k^3=810\)

\(\Rightarrow k^3=3\)

\(\Rightarrow k=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)

Vậy x = 6; y = 9; z = 15

3 tháng 1 2016

Ta có

\(x+y+z\le z+z+z=3z\)

mà x+y+z=xyz

=>\(xyz\le3z\)

<=>\(xy\le3\)

Mà \(y\ge x\)

=>\(xy\ge x^2\)

<=>\(3\ge x^2\)

mà x là số nguyên dương =>x=1

Từ đó bạn giải tiếp và tìm ra y,z nha

Nếu thấy bài làm của mình đúng thì tick nha bạn.Cảm ơn bạn nhiều.

3 tháng 1 2016

x,y,z thuộc (1;0;-1) ; (1;3;2)