K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
GL
1
29 tháng 12 2018
7z = 2x . 3y - 1 (*)
Vì x, y nguyên dương nên 2x . 3y \(⋮\) 3 \(\Rightarrow\) 2x . 3y - 1 \(\equiv\) 2 (mod 3) (1)
Ta có: 7x \(\equiv\) 1x (mod 3) \(\equiv\) 1 (mod 3) (2)
Từ (*), (1), (2) \(\Rightarrow\) Phương trình vô nghiệm
AH
Akai Haruma
Giáo viên
25 tháng 6 2024
Lời giải:
$4500=2^2.3^2.5^3$
$x< y< z$ nên $x=3$.
Khi đó: $5^3+2.5^y+5^z=4500$
$\Rightarrow 2.5^y+5^z=4375$
$5^y(2+5^{z-y})=4375=5^4.7$
Vì $2+5^{z-y}\not\vdots 5$ với mọi $y< z$ nên $5^y=5^4\Rightarrow y=4$
$\Rightarrow 2+5^{z-y}=7$
$5^{z-4}=5\Rightarrow z-4=1\Rightarrow z=5$
HL
0
Ta có: \(\left(x+y+z\right)^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
nên suy ra: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)=6=6.1.1=3.2.1\)
Do vai trò \(x,y,z\)bình đẳng nên ta xét mỗi tích một trường hợp.
TH1: \(\hept{\begin{cases}x+y=6\\y+z=1\\z+x=1\end{cases}}\)(loại) TH2: \(\hept{\begin{cases}x+y=3\\y+z=2\\z+x=1\end{cases}}\)(loại)
Vậy phương trình không có nghiệm nguyên dương.
Với định nghĩa nghiệm nguyên dương là bộ \(\left(x,y,z\right)\)với \(x,y,z\inℕ^∗\)