Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko biet thi len google ma hoi nhe minh cung ko biet bai nay
Câu hỏi của Trương Tiền Phương - Toán lớp 9 - Học toán với OnlineMath
1. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
Giả sử có số \(n\) thoả đề. Khi đó do \(a\) chính phương nên \(4a\) cũng chính phương.
Và \(4a=4n^4+8n^3+8n^2+4n+28=\left(2n^2+2n+1\right)^2+27\)
Như vậy sẽ có 2 số chính phương lệch nhau \(27\) đơn vị là số \(4a\) và \(\left(2n^2+2n+1\right)^2\).
Ta sẽ tìm 2 số chính phương như thế.
-----
Ta sẽ giải pt nghiệm nguyên dương \(m^2-n^2=27=1.27=3.9\)
Ta có bảng:
\(m+n\) | \(27\) | \(9\) |
\(m-n\) | \(1\) | \(3\) |
\(m^2\) | \(196\) | \(36\) |
\(n^2\) | \(169\) | \(9\) |
------
Theo bảng trên thì số \(\left(2n^2+2n+1\right)^2\) (số chính phương nhỏ hơn) sẽ nhận giá trị \(169\) và \(9\).
Đến đây bạn tự giải tiếp nha bạn.
Đáp số: \(2;-3\)
\(n^4+2n^3+2n^2+n+7=k^2\)
\(\Leftrightarrow\left(n^2+n\right)^2+\left(n^2+n\right)+7=k^2\)
\(\Leftrightarrow4\left(n^2+n\right)^2+4\left(n^2+n\right)+1+27=4k^2\)
\(\Leftrightarrow\left(2n^2+2n+1\right)^2-4k^2=-27\)
\(\Leftrightarrow\left(2n^2+2n+1-2k\right)\left(2n^2+2n+1+2k\right)=-27\)
Làm nôt
a) \(\frac{1}{x}+\frac{1}{y}=2\Leftrightarrow\frac{x+y}{xy}=2\)
\(\Leftrightarrow x+y=2xy\Leftrightarrow4xy=2x+2y\)
\(\Leftrightarrow4xy-2x-2y=0\Leftrightarrow2x\left(2y-1\right)-\left(2y-1\right)=1\)
\(\Leftrightarrow\left(2x-1\right)\left(2y-1\right)=1=1.1=\left(-1\right).\left(-1\right)\)
\(TH1:\hept{\begin{cases}2x-1=1\\2y-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
\(TH1:\hept{\begin{cases}2x-1=-1\\2y-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\left(L\right)\)
Vậy x = y = 1
b) A là số chính phương nên ta đặt \(n^2+2n+8=a^2\)
\(\Leftrightarrow\left(n+1\right)^2+7=a^2\)
\(\Leftrightarrow a^2-\left(n+1\right)^2=7\)
\(\Leftrightarrow\left(a-n-1\right)\left(a+n+1\right)=7=1.7=7.1\)
\(=\left(-1\right).\left(-7\right)=\left(-7\right).\left(-1\right)\)
Lập bảng:
\(a-n-1\) | \(1\) | \(7\) | \(-1\) | \(-7\) |
\(a+n+1\) | \(7\) | \(1\) | \(-7\) | \(-1\) |
\(a-n\) | \(2\) | \(8\) | \(0\) | \(-6\) |
\(a+n\) | \(6\) | \(0\) | \(-8\) | \(-2\) |
\(a\) | \(4\) | \(4\) | \(-4\) | \(-4\) |
\(n\) | \(2\) | \(-4\) | \(-4\) | \(2\) |
Mà n là số tự nhiên nên n = 2.
Để \(n^2+2n+12\) là số chính phương
\(\Rightarrow n^2+2n+12=t^2\left(t\in Z^{\text{*}}\right)\)
\(\Rightarrow t^2-\left(n^2+2n+1\right)=11\)
\(\Rightarrow t^2-\left(n+1\right)^2=11\)
\(\Rightarrow\left(t+n+1\right)\left(t-n-1\right)=11\)
Dễ thấy: \(t+n+1>t-n-1\forall t,n\in Z^{\text{*}}\)
\(\Rightarrow\hept{\begin{cases}t+n+1=11\\t-n-1=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}t=6\\n=4\end{cases}}\)(thỏa)
Vậy \(n=4\) thì \(n^2+2n+12\) là SCP
8 nha bạn
Chúc các bạn học giỏi
nha