\(\frac{1}{x}\)+ \(\frac{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2017

Số nào + lại chả được 1 số thuộc Z nhỉ

Đúng 100%

Đúng 100%

Đúng 100%

18 tháng 4 2017

Bằng z chứ không phải thuộc z bạn ơi ;-;

9 tháng 2 2017

Do vai trò của \(x,\)\(y,\)\(z\) là như nhau nên giả sử \(z\ge y\ge x\ge1.\)
Ta sẽ thử trực tiếp một vài trường hợp: 
     \(-\) Nếu \(x=1\) thì \(\frac{1}{y}+\frac{1}{z}=0\) ( vô nghiệm) 
     \(-\) Nếu \(x=2\) thì \(\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\) \(\Leftrightarrow\)\(2y+2z=yz\) \(\Leftrightarrow\)  \(\left(y-2\right)\left(z-2\right)=4\)
       Mà \(0\le y-2\le z-2\)\(4⋮\left(y-2\right),\) \(4⋮\left(z-2\right)\)
Do đó ta có các trường hợp: \(\hept{\begin{cases}y-2=1\rightarrow y=3\\z-2=4\rightarrow z=6\end{cases}}\)
                                           \(\hept{\begin{cases}y-2=2\rightarrow y=4\\z-2=2\rightarrow z=4\end{cases}}\)

     \(-\) Nếu \(x=3\) thì  \(\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\)       + Nếu \(y=3\) thì \(z=3\)
                                                                              + Nều \(y\ge4\) thì \(\frac{1}{y}+\frac{1}{z}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}< \frac{1}{3}\)
                                                                                \(\Rightarrow\) phương trình vô nghiệm 
     \(-\)Nếu \(x=4\) thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}< 1\)   \(\Rightarrow\) phương trình vô nghiệm 

         Vậy tóm lại phương trình đã cho có 10 nghiệm (bạn tự liệt kê)

9 tháng 2 2017

Không mất tính tổng quát ta giả sử

\(x\ge y\ge z>0\)

\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\le\frac{1}{z}\)

\(\Rightarrow1=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}=\frac{3}{z}\)

\(\Rightarrow z\le3\)

\(\Rightarrow z=1;2;3\)

*Với z = 1 thì 

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=0\)(sai vì x, y nguyên dương)

*Với z = 2 thì

\(\frac{1}{x}+\frac{1}{y}=1-\frac{1}{2}=\frac{1}{2}\)

\(\Rightarrow\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)

\(\Rightarrow y\le4\)

\(\Rightarrow y=1;2;3;4\)

+Với y = 1

\(\Rightarrow\frac{1}{x}=-\frac{1}{2}\)(loại)

+Với y = 2 thì

\(\Rightarrow\frac{1}{x}=0\)(loại)

+Với y = 3 thì

\(\frac{1}{x}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)

\(\Rightarrow x=6\)

+Với y = 4 thì

\(\frac{1}{x}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\)

\(\Rightarrow x=4\)

*Với z = 3 thì

\(\frac{1}{x}+\frac{1}{y}=1-\frac{1}{3}=\frac{2}{3}\)

\(\Rightarrow\frac{2}{3}\le\frac{2}{y}\)

\(\Rightarrow y\le3\)

\(\Rightarrow y=1;2;3\)

+ Với y = 1 thì

\(\frac{1}{x}=\frac{2}{3}-1=-\frac{1}{3}\)(loại)

+ Với y = 2 thì

\(\frac{1}{x}=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\)

\(\Rightarrow x=6\)

+ Với y = 3 thì

\(\frac{1}{x}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)

\(\Rightarrow x=3\)

Tới đây thì bạn tự kết luận nhé 

11 tháng 11 2016

Hỏi đáp Toán

ko phải bài của mk nên bn ko tick cx đc,mk chỉ đăng lên để giúp bn thôi

11 tháng 11 2016

vậy nghiệm nguyên dương của PT là bao nhêu

27 tháng 11 2018

1/ Ta có

 \(x^2+9x+20=x^2+4x+5x+20=x\left(x+4\right)+5\left(x+4\right)=\left(x+4\right)\left(x+5\right)\)

Tương tự

\(x^2+11x+30=\left(x+5\right)\left(x+6\right)\)

\(x^2+13x+42=\left(x+6\right)\left(x+7\right)\)

Đk: x khác 4, 5, 6, 7

\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{\left(x+5\right)-\left(x+4\right)}{\left(x+4\right)\left(x+5\right)}+\frac{\left(x+6\right)-\left(x+5\right)}{\left(x+5\right)\left(x+6\right)}+\frac{\left(x+7\right)-\left(x+6\right)}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\) EM tự làm tiếp nhé

27 tháng 11 2018

em cần đoạn tiếp mak

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

30 tháng 12 2018

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

18 tháng 10 2020

Ta có\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)(x;y > 0)

=> \(\frac{x+y}{xy}=\frac{1}{3}\)

=> 3(x + y) = xy

=> 3x + 3y = xy

=> xy - 3x - 3y = 0

=> x(y - 3) - 3y + 9 = 9

=> x(y - 3) - 3(y - 3) = 9

=> (x - 3)(y - 3) = 9

Vì x;y > 0

=> x - 3 > -3 ; y - 3 > -3 (1)

mà 9 = 1.9 = (-1).(-9) = 3.3 = (-3).(-3) (2)

Từ (1)(2) 

=> x - 3 = 1 ; y - 3 = 9 

=> x = 4 ; y = 12

hoặc x = 12 ; y = 4

Vậy các cặp (x ; y) thỏa mãn là (4;12);(12;4)

18 tháng 10 2020

Ta có \(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)

\(\Leftrightarrow\frac{y}{xy}+\frac{x}{xy}=\frac{1}{3}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{1}{3}\)

\(\Leftrightarrow3\left(x+y\right)=xy\)

\(\Leftrightarrow3x+3y-xy=0\)

\(\Leftrightarrow\left(x-3\right)\left(y-3\right)=9\)

\(\Leftrightarrow\left(x-3\right)\left(y-3\right)=9=3.3=\left(-3\right).\left(-3\right)=1.9=9.1=\left(-1\right)\left(-9\right)=\left(-9\right)\left(-1\right)\)

\(th1\hept{\begin{cases}x-3=3\Leftrightarrow x=6\\y-3=3\Leftrightarrow y=6\end{cases}}\left(tm\right)\)

\(th2\hept{\begin{cases}x-3=-3\Leftrightarrow x=0\\y-3=-3\Leftrightarrow y=0\end{cases}}\left(ktm\right)\)

\(th3\hept{\begin{cases}x-3=1\Leftrightarrow x=4\\y-3=9\Leftrightarrow y=12\end{cases}}\left(tm\right)\)

\(th4\hept{\begin{cases}x-3=9\Leftrightarrow x=12\\y-3=1\Leftrightarrow y=4\end{cases}}\left(tm\right)\)

thử các cặp còn lại rồi kl

31 tháng 3 2020

a)11x-7<8x+7

<-->11x-8x<7+7

<-->3x<14

<--->x<14/3 mà x nguyên dương 

---->x \(\in\){0;1;2;3;4}

31 tháng 3 2020

b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4

<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)

<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48

<--->21x>-45

--->x>-45/21=-15/7  mà x nguyên âm 

----->x \(\in\){-1;-2}

18 tháng 4 2017

mk mà đúng thì nhớ k cho mk nh bạn giải như vầy nè

Với x;y dương ta có:F=\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}=\left(\frac{a}{b+c}+\frac{c}{d+a}\right)+\left(\frac{b}{c+d}+\frac{d}{a+b}\right)\)

=\(\frac{a\left(a+d\right)+c\left(b+c\right)}{\left(a+d\right)\left(b+c\right)}\)+\(\frac{b\left(a+b\right)+d\left(d+c\right)}{\left(a+b\right)\left(d+c\right)}\)\(\ge\)\(\frac{a^2+c^2+ad+bc}{\frac{1}{4}\left(a+b+c+d\right)^2}\)+\(\frac{b^2+d^2+ab+cd}{\frac{1}{4}\left(a+b+c+d\right)^2}\)

   =\(\frac{4\left(a^2+b^2+c^2+d^2+ab+ad+bc+cd\right)}{^{\left(a+b+c+d\right)^2}}\)                                                        (áp dụng bđt xy\(\le\frac{1}{4}\left(x+y\right)^2\))mặt khác có 2(\(a^2 +b^2+c^2+d^2+ab+ac+bc+cd\))-\(\left(a+b+c+d\right)^2\)=\(a^2+b^2+c^2+d^2-2ac-2bd\)=\(\left(a-c\right)^2+\left(b-d\right)^2\ge0\)suy ra F\(\ge\)2, dấu ''=''xảy ra khi và chỉ khi a=c ;b=d

Aps dụng với a=2016;b=x;c=y;d=2015ta có\(\frac{2016}{x+y}+\frac{x}{y+2015}+\frac{y}{4031}+\frac{2015}{x+2016}=2\)

nên x; y cần tìm là 2015 và 2016

13 tháng 4 2017

Bạn xem đề thử nguyên hay nguyên dương nhé. Nguyên dương thì còn thấy đường làm chứ nguyên thì bó tay.

4 tháng 4 2017

Câu 2/ 

\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}=1\)

Điều kiện \(\hept{\begin{cases}x^2\ne0\\x^2+y^2\ne0\\x^2+y^2+z^2\ne0\end{cases}}\)

Xét \(x^2,y^2,z^2\ge1\)

Ta có: \(\hept{\begin{cases}x^2\ge1\\x^2+y^2\ge2\end{cases}}\)

\(\Rightarrow x^2\left(x^2+y^2\right)\ge2\)

\(\Rightarrow\frac{1}{x^2\left(x^2+y^2\right)}\le\frac{1}{2}\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}\le\frac{1}{6}\left(2\right)\\\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{3}\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được

\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{2}+\frac{1}{6}+\frac{1}{3}=1\)

Dấu = xảy ra  khi \(x^2=y^2=z^2=1\)

\(\Rightarrow\left(x,y,z\right)=?\)

Xét \(\hept{\begin{cases}x^2\ge1\\y^2=z^2=0\end{cases}}\) thì ta có

\(\frac{1}{x^4}+\frac{1}{x^4}+\frac{1}{x^4}=1\)

\(\Leftrightarrow x^4=3\left(l\right)\)

Tương tự cho 2 trường hợp còn lại: \(\hept{\begin{cases}x^2,y^2\ge1\\z^2=0\end{cases}}\) và \(\hept{\begin{cases}x^2,z^2\ge1\\y^2=0\end{cases}}\)

4 tháng 4 2017

Bài 2/

Ta có:  \(\frac{x}{y}+\frac{y}{z}+\frac{z}{t}+\frac{t}{x}\ge4\sqrt[4]{\frac{x}{y}.\frac{y}{z}.\frac{z}{t}.\frac{t}{x}}=4>3\)

Vậy phương trình không có nghiệm nguyên dương.