Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số chính phương chia 4 dư 0 hoặc 1 mà 171 chia 4 dư 3
nên 3^x phải chia 4 dư 1 hay x chẵn
x=2k thì: \(\left(3^k\right)^2+171=n^2\)
đơn giản nha
Câu hỏi của Trương Tiền Phương - Toán lớp 9 - Học toán với OnlineMath
Câu hỏi của Lan Anh Nguyễn - Toán lớp 9 - Học toán với OnlineMath
- Với \(x=1\Rightarrow y=1\)
- Với \(x>1\Rightarrow y>1\)
\(\Rightarrow3^x=2^y+1\)
Do \(y>1\Rightarrow2^y⋮4\Rightarrow2^y+1\equiv1\left(mod4\right)\) \(\Rightarrow3^x\equiv1\left(mod4\right)\)
Nếu \(x=2k+1\Rightarrow3^x=3^{2k+1}=3.9^k\equiv3\left(mod4\right)\) (ktm)
\(\Rightarrow x=2k\Rightarrow3^{2k}-1=2^y\)
\(\Rightarrow\left(3^k-1\right)\left(3^k+1\right)=2^y\)
\(\Rightarrow\left\{{}\begin{matrix}3^k-1=2^a\\3^k+1=2^b\end{matrix}\right.\) với \(b>a\Rightarrow2^b-2^a=2\)
\(\Rightarrow2^a\cdot\left(2^{b-a}-1\right)=2\Rightarrow2^a=2\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
\(\Rightarrow3^k-1=2\Rightarrow k=1\Rightarrow x=2\Rightarrow y=3\)
Vậy \(\left(x;y\right)=\left(1;1\right);\left(2;3\right)\)
Ta có:
\(x^3+7y=y^3+7x\)
\(\Leftrightarrow x^3-y^3-7x+7y=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x^2+xy+y^2-7=0\end{cases}}\)
+) \(x-y=0\)\(\Rightarrow x=y=k\left(k\inℕ^∗\right)\)
+) \(x^2+xy+y^2-7=0\)
xét: \(\Delta=y^2-4\left(y^2-7\right)=-3y^2+28\ge0\)
\(\Rightarrow3y^2\le28\Rightarrow y^2\le9\Rightarrow y\in[1;2;3]\)
Xét từng trường hợp